Zitationsschlüssel:
Fuhr:95a
Titel:
Probabilistic Datalog - a Logic for Powerful Retrieval Methods
Autor(en):
N. Fuhr
In:
Zitationsschlüssel:
SIGIR:95
Titel:
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
Herausgeber:
E. A. Fox
P. Ingwersen
R. Fidel
Verlag:
ACM
In:
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
Jahr:
1995
Notiz:
ISBN 0-89791-714-6

BibTeX-Eintrag

Seite(n):
282--290
Jahr:
1995

Zusammenfassung:
In the logical approach to information retrieval, retrieval is considered as uncertain inference. Here we present a new, powerful inference method for this purpose which combines Datalog with probability theory on the basis of intensional semantics. We describe syntax and semantics of probabilistic Datalog and also present an evaluation method and a prototype implementation. This approach allows for easy formulation of specific retrieval models for arbitrary applications, and classical probabilistic IR models can be implemented by specifying the appropriate rules. In comparison to other approaches, the possibility of recursive rules allows for more powerful inferences. Finally, probabilistic Datalog can be used as a query language for integrated information retrieval and database systems.
Klassifikation(en):
I.2.3, H.2.1
Subjektdeskriptor(en):
data models, logic programming, probabilistic reasoning

BibTeX-Eintrag

Volltext als PS