\[\frac{N-m}{m} \cdot \frac{\frac{N}{m} \cdot \text{boy}}{\frac{N}{m} \cdot 0} = \text{boy} \]

\[\frac{N}{m} \cdot \frac{\text{boy}}{0} = \frac{\frac{N}{m} \cdot \text{boy}}{0} \]

\[\frac{N}{m} \cdot \text{boy} + \frac{\text{boy}}{0} = 0 \]

\[\frac{N}{m} \cdot \text{boy} + 0 = 0 \]

\[\frac{N}{m} \cdot \text{boy} = 0 \]

\[\text{boy} \]

\[\frac{1}{2} \]

\[\text{boy} \]

\[\frac{1}{2} \]

\[\text{boy} \]

\[\frac{1}{2} \]

\[\text{boy} \]
and the regular programming.

```
d: (z) -> d(z) 
```

minimized grammar:

```
\mathcal{C}(q, x) = \mathcal{C}(q, d(z), d(w), \ldots, d(x)) 
```

\[\mathcal{C}(q, x) = \mathcal{C}(q, d(z), d(w), \ldots, d(x)) \]

Great.