Data Mining
Practical Machine Learning Tools and Techniques
Slides for Chapter 3 of *Data Mining* by I. H. Witten, E. Frank and M. A. Hall

Output: Knowledge representation

- Tables
- Linear models
- Trees
- Rules
 - Classification rules
 - Association rules
 - Rules with exceptions
 - More expressive rules
- Instance-based representation
- Clusters

Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, rules, instance-based, ...
- Also called “knowledge” representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, ...)

Tables

- Simplest way of representing output:
 - Use the same format as input!
- Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

- Main problem: selecting the right attributes
Linear models

- Another simple representation
- Regression model
 - Inputs (attribute values) and output are all numeric
- Output is the sum of weighted attribute values
 - The trick is to find good values for the weights

A linear regression function for the CPU performance data

\[PRP = 37.06 + 2.47CACH \]

Linear models for classification

- Binary classification
- Line separates the two classes
 - Decision boundary - defines where the decision changes from one class value to the other
- Prediction is made by plugging in observed values of the attributes into the expression
 - Predict one class if output \(\geq 0 \), and the other class if output < 0
- Boundary becomes a high-dimensional plane (hyperplane) when there are multiple attributes

Separating setosas from versicolors

\[2.0 - 0.5\text{PETAL-LENGTH} - 0.8\text{PETAL-WIDTH} = 0 \]
Trees

- “Divide-and-conquer” approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

Nominal and numeric attributes

- Nominal:
 - number of children usually equal to number values
 - attribute won’t get tested more than once
- Other possibility: division into two subsets
- Numeric:
 - test whether value is greater or less than constant
 - attribute may get tested several times
- Other possibility: three-way split (or multi-way split)
 - Integer: less than, equal to, greater than
 - Real: below, within, above

Missing values

- Does absence of value have some significance?
- Yes ⇒ “missing” is a separate value
- No ⇒ “missing” must be treated in a special way
 - Solution A: assign instance to most popular branch
 - Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leave nodes are combined using the weights that have percolated to them

Trees for numeric prediction

- Regression: the process of computing an expression that predicts a numeric quantity
- Regression tree: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- Model tree: “regression tree” with linear regression models at the leaf nodes
 - Linear patches approximate continuous function
13

Linear regression for the CPU data

\[
PRP = -56.1 + 0.049 \text{MYCT} + 0.015 \text{MMIN} + 0.006 \text{MMAK} + 0.630 \text{CACH} - 0.270 \text{CHMIN} + 1.46 \text{CHMAX}
\]

14

Regression tree for the CPU data

15

Model tree for the CPU data

16

Classification rules

- Popular alternative to decision trees
- *Antecedent* (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- *Consequent* (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply
From trees to rules

- Easy: converting a tree into a set of rules
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
 - Doesn’t matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - Pruning to remove redundant tests/rules

From rules to trees

- More difficult: transforming a rule set into a tree
 - Tree cannot easily express disjunction between a and b
 - Example: rules which test different attributes
 - If \(a\) and \(b\) then \(x\)
 - If \(c\) and \(d\) then \(x\)
 - Symmetry needs to be broken
 - Corresponding tree contains identical subtrees (\(\Rightarrow\) “replicated subtree problem”)

A tree for a simple disjunction

The exclusive-or problem
A tree with a replicated subtree

If \(x = 1 \) and \(y = 1 \)
 then class = \(a \)
If \(z = 1 \) and \(w = 1 \)
 then class = \(a \)
Otherwise class = \(b \)

“Nuggets” of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance

Interpreting rules

- What if two or more rules conflict?
 - Give no conclusion at all?
 - Go with rule that is most popular on training data?
 - …
- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?
 - …

Special case: boolean class

- Assumption: if instance does not belong to class “yes”, it belongs to class “no”
- Trick: only learn rules for class “yes” and use default rule for “no”

\[
\begin{align*}
& \text{If } x = 1 \text{ and } y = 1 \text{ then class } = a \\
& \text{If } z = 1 \text{ and } w = 1 \text{ then class } = a \\
& \text{Otherwise class } = b
\end{align*}
\]

- Order of rules is not important. No conflicts!
- Rule can be written in disjunctive normal form
Association rules

• Association rules...
 • ... can predict any attribute and combinations of attributes
 • ... are not intended to be used together as a set
• Problem: immense number of possible associations
 • Output needs to be restricted to show only the most predictive associations \(\Rightarrow \) only those with high \textit{support} and high \textit{confidence}

Support and confidence of a rule

• Support: number of instances predicted correctly
• Confidence: number of correct predictions, as proportion of all instances that rule applies to
• Example: 4 cool days with normal humidity

\[
\text{If temperature = cool then humidity = normal}
\]
\[
\Rightarrow \text{Support} = 4, \text{confidence} = 100\%
\]
• Normally: minimum support and confidence pre-specified (e.g. 58 rules with support \(\geq 2 \) and confidence \(\geq 95\% \) for weather data)

Interpreting association rules

• Interpretation is not obvious:
 \[
 \text{If windy = false and play = no then outlook = sunny and humidity = high}
 \]
is not the same as
 \[
 \text{If windy = false and play = no then outlook = sunny}
 \]
 \[
 \text{If windy = false and play = no then humidity = high}
 \]
• It means that the following also holds:
 \[
 \text{If humidity = high and windy = false and play = no then outlook = sunny}
 \]

Rules with exceptions

• Idea: allow rules to have \textit{exceptions}
• Example: rule for iris data
 \[
 \text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor}
 \]
• New instance:

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Sepal length} & \text{Sepal width} & \text{Petal length} & \text{Petal width} & \text{Type} \\
\hline
5.1 & 3.5 & 2.6 & 0.2 & \text{Iris-setosa} \\
\hline
\end{array}
\]
• Modified rule:

\[
\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor EXCEPT if petal-width} < 1.0 \text{ then Iris-setosa}
\]
A more complex example

- Exceptions to exceptions to exceptions …

```csharp
default: Iris-setosa

except if petal-length ≥ 2.45 and petal-length < 5.355
    and petal-width < 1.75
    then Iris-versicolor
    except if petal-length ≥ 4.95 and petal-width < 1.55
        then Iris-virginica
    else if sepal-length < 4.95 and sepal-width ≥ 2.45
        then Iris-virginica
    else if petal-length ≥ 3.35
        then Iris-virginica
    except if petal-length < 4.85 and sepal-length < 5.95
        then Iris-versicolor
```

Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets don’t offer this advantage

More on exceptions

- Default...except if...then...
is logically equivalent to
if...then...else
(where the else specifies what the default did)
- But: exceptions offer a psychological advantage
 - Assumption: defaults and tests early on apply more widely than exceptions further down
 - Exceptions reflect special cases

Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
- These rules are called “propositional” because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - Can’t be expressed with propositional rules
 - More expressive representation required
The shapes problem

- Target concept: *standing up*
- Shaded: *standing*
- Unshaded: *lying*

A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>Lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width ≥ 3.5 and height < 7.0 then lying
If height ≥ 3.5 then standing

A relational solution

- Comparing attributes with each other
 - If width > height then lying
 - If height > width then standing
- Generalizes better to new data
- Standard relations: =, <, >
- But: learning relational rules is costly
- Simple solution: add extra attributes (e.g. a binary attribute *is width < height*)

Rules with variables

- Using variables and multiple relations:
 - If height_and_width_of(x,h,w) and h > w then standing(x)
- The top of a tower of blocks is standing:
 - If height_and_width_of(x,h,w) and h > w and is_top_of(y,x) then standing(w)
- The whole tower is standing:
 - If is_top_of(x,z) and height_and_width_of(z,h,w) and h > w and is_rest_of(x,y) and standing(y) then standing(x)
 - If empty(x) then standing(x)
- Recursive definition!
Inductive logic programming

- Recursive definition can be seen as logic program
- Techniques for learning logic programs stem from the area of “inductive logic programming” (ILP)
- But: recursive definitions are hard to learn
 - Also: few practical problems require recursion
 - Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier

Instance-based representation

- Simplest form of learning: *rote learning*
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what’s “learned”
- Instance-based learning is *lazy* learning
- Methods: *nearest-neighbor, k-nearest-neighbor, …*

The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

Learning prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples
Rectangular generalizations

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than “normal” rules.)
- Nested rectangles are rules with exceptions

Representing clusters I

Simple 2-D representation

Venn diagram

Overlapping clusters

Representing clusters II

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Dendrogram

NB: dendron is the Greek word for tree