Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 4 of Data Mining by I. H. Witten, E. Frank and M. A. Hall

Algorithms: The basic methods

- Inferring rudimentary rules
- Statistical modeling
- Constructing decision trees
- Constructing rules
- Association rule learning
- Linear models
- Instance-based learning
- Clustering

Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, e.g:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - A weighted linear combination might do
 - Instance-based: use a few prototypes
 - Use simple logical rules
- Success of method depends on the domain

Inferring rudimentary rules

- 1R: learns a 1-level decision tree
 - I.e., rules that all test one particular attribute
- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don’t belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

(assumes nominal attributes)
Pseudo-code for 1R

For each attribute,
 For each value of the attribute, make a rule as follows:
 count how often each class appears
 find the most frequent class
 make the rule assign that class to this attribute-value
 Calculate the error rate of the rules
Choose the rules with the smallest error rate

- Note: “missing” is treated as a separate attribute value

Dealing with numeric attributes

- Discretize numeric attributes
- Divide each attribute’s range into intervals
 - Sort instances according to attribute’s values
 - Place breakpoints where class changes (majority class)
- This minimizes the total error
- Example: temperature from weather data

<table>
<thead>
<tr>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Evaluating the weather attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny → No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast → Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy → Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>Hot → No*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>Mild → Yes</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool → Yes</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>High → No</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Normal → Yes</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>False → Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True → No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

* indicates a tie

The problem of overfitting

- This procedure is very sensitive to noise
 - One instance with an incorrect class label will probably produce a separate interval
- Also: time stamp attribute will have zero errors
- Simple solution: enforce minimum number of instances in majority class per interval
- Example (with min = 3):

<table>
<thead>
<tr>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

With overfitting avoidance

- Resulting rule set:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny → No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast → Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy → Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>≤ 77.5 → Yes</td>
<td>3/10</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>> 77.5 → No*</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>≤ 82.5 → Yes</td>
<td>1/7</td>
<td>3/14</td>
</tr>
<tr>
<td></td>
<td>> 82.5 and ≤ 95.5 → No</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 95.5 → Yes</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>False → Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True → No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of 1R

- 1R was described in a paper by Holte (1993)
 - Contains an experimental evaluation on 16 datasets (using cross-validation so that results were representative of performance on future data)
 - Minimum number of instances was set to 6 after some experimentation
 - 1R’s simple rules performed not much worse than much more complex decision trees
 - Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

Discussion of 1R: Hyperpipes

- Another simple technique: build one rule for each class
 - Each rule is a conjunction of tests, one for each attribute
 - For numeric attributes: test checks whether instance’s value is inside an interval
 - Interval given by minimum and maximum observed in training data
 - For nominal attributes: test checks whether value is one of a subset of attribute values
 - Subset given by all possible values observed in training data
 - Class with most matching tests is predicted

Statistical modeling

- “Opposite” of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is never correct!
- But … this scheme works well in practice
Bayes’s rule

- Probability of event H given evidence E

$$\Pr[H|E] = \frac{\Pr[E|H]\Pr[H]}{\Pr[E]}$$

- A priori probability of H: $\Pr[H]$
 - Probability of event before evidence is seen

- A posteriori probability of H: $\Pr[H|E]$
 - Probability of event after evidence is seen

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England
Weather data example

\[
Pr[\text{yes}|E] = Pr[\text{Outlook}=\text{Sunny}|\text{yes}] \times Pr[\text{Temperature}=\text{Cool}|\text{yes}] \times Pr[\text{Humidity}=\text{High}|\text{yes}] \times Pr[\text{Windy}=\text{True}|\text{yes}] \times Pr[\text{yes}] \times Pr[E]
\]

\[
\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = \frac{1}{9}\times \frac{3}{9} \times \frac{9}{9} \times \frac{9}{9} \times \frac{14}{14}
\]

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class yes

\[
\begin{align*}
\text{Sunny} & : 2+\mu/3 & 4+\mu/3 & 3+\mu/3 \\
\text{Overcast} & : 9+\mu & 9+\mu & 9+\mu \\
\text{Rainy} & : 9+\mu & 9+\mu & 9+\mu
\end{align*}
\]

- Weights don’t need to be equal (but they must sum to 1)

\[
\begin{align*}
\text{Sunny} & : 2+\mu p_1 & 4+\mu p_2 & 3+\mu p_3 \\
\text{Overcast} & : 9+\mu & 9+\mu & 9+\mu
\end{align*}
\]

The “zero-frequency problem”

- What if an attribute value doesn’t occur with every class value?
 (e.g. “Humidity = high” for class “yes”)
 - Probability will be zero! \(Pr[\text{Humidity}=\text{high}|\text{yes}]=0\)
 - A posteriori probability will also be zero! \(Pr[\text{yes}|E]=0\)
 (No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)
- Result: probabilities will never be zero!
 (also: stabilizes probability estimates)

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

\[
\begin{array}{ccc}
\text{Outlook} & \text{Temp.} & \text{Humidity} & \text{Windy} & \text{Play} \\
? & \text{Cool} & \text{High} & \text{True} & ?
\end{array}
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Likelihood of “yes” = \(3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238\)

Likelihood of “no” = \(1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343\)

P(“yes”) = \(0.0238 / (0.0238 + 0.0343) = 41\%\)

P(“no”) = \(0.0343 / (0.0238 + 0.0343) = 59\%\)
Numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class).

- The probability density function for the normal distribution is defined by two parameters:
 - Sample mean $\mu = \frac{1}{n} \sum x_i$
 - Standard deviation $\sigma = \sqrt{\frac{1}{n-1} \sum (x_i-\mu)^2}$

- Then the density function $f(x)$ is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Statistics for weather data

- Example density value:

$$f(temperature=66|yes) = \frac{1}{\sqrt{2\pi 6.2}} e^{-\frac{(66-73)^2}{2(6.2)^2}} = 0.0340$$

Classifying a new day

- A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>66</td>
<td>90</td>
<td>true</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$

Likelihood of “no” = $3/5 \times 0.0221 \times 0.0381 \times 3/5 \times 5/14 = 0.000108$

P(“yes”) = 0.000036 / (0.000036 + 0.000108) = 25%

P(“no”) = 0.000108 / (0.000036 + 0.000108) = 75%

- Missing values during training are not included in calculation of mean and standard deviation.

Probability densities

- Relationship between probability and density:

$$Pr\left[c - \frac{\varepsilon}{2} < x < c + \frac{\varepsilon}{2}\right] \approx \varepsilon \times f(c)$$

- But: this doesn’t change calculation of a posteriori probabilities because ε cancels out.

- Exact relationship:

$$Pr[a \leq x \leq b] = \int_a^b f(t) dt$$
Multinomial naïve Bayes I

- Version of naïve Bayes used for document classification using *bag of words* model
- \(n_1, n_2, \ldots, n_k \): number of times word \(i \) occurs in document
- \(P_1, P_2, \ldots, P_k \): probability of obtaining word \(i \) when sampling from documents in class \(H \)
- Probability of observing document \(E \) given class \(H \) (based on *multinomial distribution*):
 \[
 Pr[E|H] \approx N! \times \prod_{i=1}^{k} \frac{n_i^{p_i}}{n_i!}
 \]
- Ignores probability of generating a document of the right length (prob. assumed constant for each class)

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn’t require accurate probability estimates *as long as maximum probability is assigned to correct class*
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ *kernel density estimators*)

Multinomial naïve Bayes II

- Suppose dictionary has two words, *yellow* and *blue*
- Suppose \(Pr[yellow|H] = 75\% \) and \(Pr[blue|H] = 25\% \)
- Suppose \(E \) is the document “*blue yellow blue*”
- Probability of observing document:
 \[
 Pr[\{\text{blue yellow blue}\}|H] \approx 3! \times 0.75^1 \times 0.25^2 = \frac{9}{64} \approx 0.14
 \]
- Suppose there is another class \(H' \) that has
 \[
 Pr[yellow|H'] = 10\% \text{ and } Pr[blue|H'] = 90\%:
 \]
 \[
 Pr[\{\text{blue yellow blue}\}|H'] \approx 3! \times 0.1^1 \times 0.9^2 = 0.24
 \]
- Need to take prior probability of class into account to make final classification
- Factorials don’t actually need to be computed
- Underflows can be prevented by using logarithms

Constructing decision trees

- Strategy: top down
 Recursive *divide-and-conquer* fashion
 - First: select attribute for root node
 Create branch for each possible attribute value
 - Then: split instances into subsets
 One for each branch extending from the node
 - Finally: repeat recursively for each branch, using only instances that reach the branch
- Stop if all instances have the same class
Which attribute to select?

Criterion for attribute selection

- Which is the best attribute?
 - Want to get the smallest tree
 - Heuristic: choose the attribute that produces the “purest” nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets
- Strategy: choose attribute that gives greatest information gain

Computing information

- Measure information in bits
 - Given a probability distribution, the info required to predict an event is the distribution’s entropy
 - Entropy gives the information required in bits (can involve fractions of bits!)
- Formula for computing the entropy:

\[
\text{entropy}(p_1, p_2, ..., p_n) = -p_1\log p_1 - p_2\log p_2 - ... - p_n\log p_n
\]
Example: attribute *Outlook*

- **Outlook** = Sunny:
 \[\text{info}(\{2,3\}) = \text{entropy}(2/5,3/5) = -2/5 \log(2/5) - 3/5 \log(3/5) = 0.971 \text{bits} \]
- **Outlook** = Overcast:
 \[\text{info}(\{4,0\}) = \text{entropy}(1,1) = -1 \log(1) - 0 \log(0) = 0 \text{ bits} \]
- **Outlook** = Rainy:
 \[\text{info}(\{2,3\}) = \text{entropy}(3/5,2/5) = -3/5 \log(3/5) - 2/5 \log(2/5) = 0.971 \text{bits} \]

Expected information for attribute:

\[\text{info}(\{3,2\},\{4,0\},\{3,2\}) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \text{bits} \]

Computing information gain

- Information gain: information before splitting – information after splitting
 \[\text{gain}(\text{Outlook}) = \text{info}(\{9,5\}) - \text{info}(\{2,3\},\{4,0\},\{3,2\}) = 0.940 - 0.693 = 0.247 \text{ bits} \]
- Information gain for attributes from weather data:
 \[
 \begin{align*}
 \text{gain}(\text{Outlook}) & = 0.247 \text{ bits} \\
 \text{gain}(\text{Temperature}) & = 0.029 \text{ bits} \\
 \text{gain}(\text{Humidity}) & = 0.152 \text{ bits} \\
 \text{gain}(\text{Windy}) & = 0.048 \text{ bits}
 \end{align*}
 \]

Continuing to split

- **Temperature**
 \[\text{gain}(\text{Temperature}) = 0.571 \text{ bits} \]

- **Humidity**
 \[\text{gain}(\text{Humidity}) = 0.971 \text{ bits} \]

- **Windy**
 \[\text{gain}(\text{Windy}) = 0.020 \text{ bits} \]

Final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 \[\Rightarrow \text{Splitting stops when data can’t be split any further} \]
Wishlist for a purity measure

- Properties we require from a purity measure:
 - When node is pure, measure should be zero
 - When impurity is maximal (i.e. all classes equally likely), measure should be maximal
 - Measure should obey multistage property (i.e. decisions can be made in several stages):
 \[
 \text{measure}([2,3,4]) = \text{measure}([2,7]) + (7/9) \times \text{measure}([3,4])
 \]
- Entropy is the only function that satisfies all three properties!

Properties of the entropy

- The multistage property:
 \[
 \text{entropy}(p, q, r) = \text{entropy}(p, q+r) + (q+r) \times \text{entropy}(\frac{q}{q+r}, \frac{r}{q+r})
 \]
- Simplification of computation:
 \[
 \text{info}([2,3,4]) = -2/9 \times \log(2/9) - 3/9 \times \log(3/9) - 4/9 \times \log(4/9)
 = [-2 \times \log 2 - 3 \times \log 3 - 4 \times \log 4 + 9 \times \log 9]/9
 \]
- Note: instead of maximizing info gain we could just minimize information

Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 \[\Rightarrow \] Information gain is biased towards choosing attributes with a large number of values
 \[\Rightarrow \] This may result in overfitting (selection of an attribute that is non-optimal for prediction)
- Another problem: fragmentation

Weather data with ID code

<table>
<thead>
<tr>
<th>ID code</th>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>G</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>I</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>K</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>L</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>M</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>
Tree stump for *ID code* attribute

- Entropy of split:

 \[
 \text{info}(\text{ID code}) = \text{info}([0,1]) + \text{info}([0,1]) + \ldots + \text{info}([0,1]) = 0 \text{ bits}
 \]

 \[\Rightarrow\]

 Information gain is maximal for ID code (namely 0.940 bits)

Gain ratio

- *Gain ratio*: a modification of the information gain that reduces its bias
- Gain ratio takes number and size of branches into account when choosing an attribute
 - It corrects the information gain by taking the *intrinsic information* of a split into account
- Intrinsic information: entropy of distribution of instances into branches (i.e. how much info do we need to tell which branch an instance belongs to)

Computing the gain ratio

- Example: intrinsic information for ID code
 \[
 \text{info}([1,1,\ldots,1]) = 14 \times (-1/14 \times \log(1/14)) = 3.807 \text{ bits}
 \]
- Value of attribute decreases as intrinsic information gets larger
- Definition of gain ratio:
 \[
 \text{gain_ratio}(\text{attribute}) = \frac{\text{gain}(\text{attribute})}{\text{intrinsic_info}(\text{attribute})}
 \]
- Example:
 \[
 \text{gain_ratio}(\text{ID code}) = \frac{0.940 \text{ bits}}{3.807 \text{ bits}} = 0.246
 \]

Gain ratios for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info: 0.693</td>
<td>Info: 0.911</td>
</tr>
<tr>
<td>Gain: 0.940-0.693</td>
<td>Gain: 0.940-0.911</td>
</tr>
<tr>
<td>Split info: info([5,4,5])</td>
<td>Split info: info([4,6,4])</td>
</tr>
<tr>
<td>Gain ratio: 0.247/1.577</td>
<td>Gain ratio: 0.029/1.557</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Windy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info: 0.788</td>
<td>Info: 0.892</td>
</tr>
<tr>
<td>Gain: 0.940-0.788</td>
<td>Gain: 0.940-0.892</td>
</tr>
<tr>
<td>Split info: info([8,6])</td>
<td>Split info: info([8,6])</td>
</tr>
<tr>
<td>Gain ratio: 0.152/1</td>
<td>Gain ratio: 0.048/0.985</td>
</tr>
</tbody>
</table>
More on the gain ratio

- “Outlook” still comes out top
- However: “ID code” has greater gain ratio
 - Standard fix: ad hoc test to prevent splitting on that type of attribute
- Problem with gain ratio: it may overcompensate
 - May choose an attribute just because its intrinsic information is very low
 - Standard fix: only consider attributes with greater than average information gain

Discussion

- Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
 - Gain ratio just one modification of this basic algorithm
 - C4.5: deals with numeric attributes, missing values, noisy data
- Similar approach: CART
- There are many other attribute selection criteria!
 (But little difference in accuracy of result)

Covering algorithms

- Convert decision tree into a rule set
 - Straightforward, but rule set overly complex
 - More effective conversions are not trivial
- Instead, can generate rule set directly
 - for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- Called a covering approach:
 - at each stage a rule is identified that “covers” some of the instances

Example: generating a rule

- Possible rule set for class “b”:
 - If $x \leq 1.2$ then $\text{class} = b$
 - If $x > 1.2$ and $y \leq 2.6$ then $\text{class} = b$
- Could add more rules, get “perfect” rule set
Rules vs. trees

Corresponding decision tree:
(produces exactly the same predictions)

- But: rule sets can be more perspicuous when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

Simple covering algorithm

- Generates a rule by adding tests that maximize rule’s accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule’s coverage:

Selecting a test

- Goal: maximize accuracy
 - \(t \) total number of instances covered by rule
 - \(p \) positive examples of the class covered by rule
 - \(t - p \) number of errors made by rule
 \(\Rightarrow \) Select test that maximizes the ratio \(p/t \)
- We are finished when \(p/t = 1 \) or the set of instances can’t be split any further

Example: contact lens data

- Rule we seek: If ? then recommendation = hard
- Possible tests:

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12
Modified rule and resulting data

- Rule with best test added:

 If astigmatism = yes
 then recommendation = hard

- Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>
The result

• Final rule: If astigmatism = yes
 and tear production rate = normal
 and spectacle prescription = myope
 then recommendation = hard

• Second rule for recommending “hard lenses”:
 (built from instances not covered by first rule)

 If age = young and astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

• These two rules cover all “hard lenses”:
 • Process is repeated with other two classes

Rules vs. decision lists

• PRISM with outer loop removed generates a decision list for one class
 • Subsequent rules are designed for rules that are not covered by previous rules
 • But: order doesn’t matter because all rules predict the same class

• Outer loop considers all classes separately
 • No order dependence implied

• Problems: overlapping rules, default rule required

Pseudo-code for PRISM

For each class C
 Initialize E to the instance set
 While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A = v to R
 Remove the instances covered by R from E

Separate and conquer

• Methods like PRISM (for dealing with one class) are separate-and-conquer algorithms:
 • First, identify a useful rule
 • Then, separate out all the instances it covers
 • Finally, “conquer” the remaining instances

• Difference to divide-and-conquer methods:
 • Subset covered by rule doesn’t need to be explored any further
Mining association rules

- Naïve method for finding association rules:
 - Use separate-and-conquer method
 - Treat every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- But: we can look for high support rules directly!

Item sets

- Support: number of instances correctly covered by association rule
 - The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set: all items occurring in a rule
- Goal: only rules that exceed pre-defined support
 ⇒ Do it by finding all item sets with the given minimum support and generating rules from them!

Weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>

Item sets for weather data

<table>
<thead>
<tr>
<th>One-item sets</th>
<th>Two-item sets</th>
<th>Three-item sets</th>
<th>Four-item sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook = Sunny (5)</td>
<td>Outlook = Sunny</td>
<td>Outlook = Sunny</td>
<td>Outlook = Sunny</td>
</tr>
<tr>
<td>Temperature = Hot (2)</td>
<td>Humidity = High (3)</td>
<td>Temperature = Hot</td>
<td>Humidity = High</td>
</tr>
<tr>
<td>Windy = False</td>
<td>Play = No (2)</td>
<td>Temperature = Hot</td>
<td>Humidity = High</td>
</tr>
<tr>
<td>Outlook = Sunny (5)</td>
<td>Humidity = High (3)</td>
<td>Outlook = Rainy</td>
<td>Temperature = Mild</td>
</tr>
<tr>
<td>Temperature = Hot</td>
<td>Windy = False (2)</td>
<td>Temperature = Mild</td>
<td>Windy = False</td>
</tr>
<tr>
<td>Play = Yes (2)</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)
Generating rules from an item set

- Once all item sets with minimum support have been generated, we can turn them into rules
- Example:

 Humidity = Normal, Windy = False, Play = Yes (4)

- Seven \((2^N-1)\) potential rules:

 If Humidity = Normal and Windy = False then Play = Yes 4/4
 If Humidity = Normal and Play = Yes then Windy = False 4/6
 If Windy = False and Play = Yes then Humidity = Normal 4/6
 If Humidity = Normal then Windy = False and Play = Yes 4/7
 If Windy = False then Humidity = Normal and Play = Yes 4/8
 If Play = Yes then Humidity = Normal and Windy = False 4/9
 If True then Humidity = Normal and Windy = False and Play = Yes 4/12

Example rules from the same set

- Item set:

 Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

- Resulting rules (all with 100% confidence):

 Temperature = Cool, Windy = False \(\Rightarrow\) Humidity = Normal, Play = Yes
 Temperature = Cool, Windy = False, Humidity = Normal \(\Rightarrow\) Play = Yes
 Temperature = Cool, Windy = False, Play = Yes \(\Rightarrow\) Humidity = Normal

due to the following “frequent” item sets:

 Temperature = Cool, Windy = False \(\Rightarrow\) Humidity = Normal, Windy = False (2)
 Temperature = Cool, Windy = False, Play = Yes \(\Rightarrow\) Humidity = Normal (2)

Rules for weather data

- Rules with support > 1 and confidence = 100%:

<table>
<thead>
<tr>
<th>Association rule</th>
<th>Sup.</th>
<th>Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity=Normal Windy=False (\Rightarrow) Play=Yes</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Temperature=Cool (\Rightarrow) Humidity=Normal</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Outlook=Overcast (\Rightarrow) Play=Yes</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Temperature=Cold Play=Yes (\Rightarrow) Humidity=Normal</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Outlook=Sunny Temperature=Hot (\Rightarrow) Humidity=High</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

- In total:
 3 rules with support four
 5 with support three
 50 with support two

Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, …
 - If \((A \ B)\) is frequent item set, then \(A\) and \(B\) have to be frequent item sets as well!
 - In general: if \(X\) is frequent \(k\)-item set, then all \((k-1)\)-item subsets of \(X\) are also frequent

 \[\Rightarrow \text{Compute} \ k\text{-item set by merging}(k-1)\text{-item sets} \]
Example

- Given: five three-item sets
 (A B C), (A B D), (A C D), (A C E), (B C D)
- Lexicographically ordered!
- Candidate four-item sets:
 (A B C D)
 OK because of (A C D) (B C D)
 (A C D E)
 Not OK because of (C D E)
- Final check by counting instances in dataset!
- (k−1)-item sets are stored in hash table

Efficient Generation of Itemsets

Scan all records and count the occurrences of all 1-itemsets
k=2
repeat
 for each k-itemset still possible (from the k-1-Itemsets)
 test, if all its subsumed k-1-itemsets exist
 if yes, note k-itemset as candidate
 Scan all records and count the occurrences of the k-itemsets
 delete all itemsets with insufficient support
 k=k+1
until k > #attributes

Generating rules efficiently

- We are looking for all high-confidence rules
 - Support of antecedent obtained from hash table
 - But: brute-force method is \(2^N-1\)
- Better way: building \((c+1)\)-consequent rules from \(c\)-consequent ones
 - Observation: \((c+1)\)-consequent rule can only hold if all corresponding \(c\)-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets

Example

- 1-consequent rules:
 If Outlook = Sunny and Windy = False and Play = No
 then Humidity = High (2/2)
 If Humidity = High and Windy = False and Play = No
 then Outlook = Sunny (2/2)

 Corresponding 2-consequent rule:
 If Windy = False and Play = No
 then Outlook = Sunny and Humidity = High (2/2)

 - Final check of antecedent against hash table!
Algorithm for Rule Generation

c=1
for each k-itemset
 for each possible rule with c consequences
 determine frequency of antecedent (from hash table);
 if minimal confidence is reached, insert rule;
 repeat c=c+1
from the rules with c-1 consequences, form all possible rules with c consequences;
 for each rule with c consequences
 test, if all its contained rules with c-1 consequences exist;
 if not, delete rule;
 determine frequency of antecedent (form hash table),
 compute confidence
 delete rule, if minimum confidence is not reached;
until c=k

Association rules: discussion

- Above method makes one pass through the data for each different size item set
 - Other possibility: generate \((k+2)\)-item sets just after \((k+1)\)-item sets have been generated
 - Result: more \((k+2)\)-item sets than necessary will be considered but less passes through the data
 - Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)

Other issues

- Standard ARFF format very inefficient for typical market basket data
 - Attributes represent items in a basket and most items are usually missing
 - Data should be represented in sparse format
- Instances are also called transactions
- Confidence is not necessarily the best measure
 - Example: milk occurs in almost every supermarket transaction
 - Other measures have been devised (e.g. lift)

Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
 - Outcome is linear combination of attributes
 \[x = w_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k \]
 - Weights are calculated from the training data
- Predicted value for first training instance \(a^{(1)}\)
 \[w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \ldots + w_k a_k^{(1)} = \sum_{j=0}^{k} w_j a_j^{(1)} \]
 (assuming each instance is extended with a constant attribute with value 1)
Minimizing the squared error

- Choose $k + 1$ coefficients to minimize the squared error on the training data
- Squared error:
 \[\sum_{i=1}^{n} (x_i - \sum_{j=0}^{k} w_j a_j)^2 \]
- Derive coefficients using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

Classification

- *Any* regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don’t
 - Prediction: predict class corresponding to model with largest output value (*membership value*)
- For linear regression this is known as *multi-response linear regression*
- Problem: membership values are not in [0,1] range, so aren’t proper probability estimates

Linear models: logistic regression

- Builds a linear model for a transformed target variable
- Assume we have two classes
- Logistic regression replaces the target
 \[P[1|a_1, a_2, ..., a_k] \]
 by this target
 \[\log \left(\frac{P[1|a_1, a_2, ..., a_k]}{1-P[1|a_1, a_2, ..., a_k]} \right) \]
- *Logit transformation* maps [0,1] to $(-\infty, +\infty)$

Logit transformation

- Resulting model:
 \[Pr[1|a_1, a_2, ..., a_k] = \frac{1}{1 + e^{-(w_0 + w_1 a_1 + \cdots + w_k a_k)}} \]
Example logistic regression model

- Model with $w_0 = 0.5$ and $w_1 = 1$:

![Graph of logistic regression model]

- Parameters are found from training data using maximum likelihood

Maximum likelihood

- Aim: maximize probability of training data wrt parameters
- Can use logarithms of probabilities and maximize log-likelihood of model:

$$\sum_{i=1}^{n} (1-x^{(i)}) \log (1-Pr[1|a_1^{(i)}, a_2^{(i)}, \ldots, a_k^{(i)}]) + x^{(i)} \log Pr[1|a_1^{(i)}, a_2^{(i)}, \ldots, a_k^{(i)}]$$

where the $x^{(i)}$ are either 0 or 1
- Weights w_i need to be chosen to maximize log-likelihood (relatively simple method: iteratively re-weighted least squares)

Multiple classes

- Can perform logistic regression independently for each class (like multi-response linear regression)
- Problem: probability estimates for different classes won't sum to one
- Better: train coupled models by maximizing likelihood over all classes
- Alternative that often works well in practice: pairwise classification

Pairwise classification

- Idea: build model for each pair of classes, using only training data from those classes
- Problem? Have to solve $k(k-1)/2$ classification problems for k-class problem
- Turns out not to be a problem in many cases because training sets become small:
 - Assume data evenly distributed, i.e. $2n/k$ per learning problem for n instances in total
 - Suppose learning algorithm is linear in n
 - Then runtime of pairwise classification is proportional to $(k(k-1)/2) \times (2n/k) = (k-1)n$
Linear models are hyperplanes

- Decision boundary for two-class logistic regression is where probability equals 0.5:

$$Pr[1|a_1,a_2,...,a_k] = 1/(1 + \exp(-w_0 - w_1 a_1 - ... - w_k a_k)) = 0.5$$

which occurs when

$$-w_0 - w_1 a_1 - ... - w_k a_k = 0$$

- Thus logistic regression can only separate data that can be separated by a hyperplane

- Multi-response linear regression has the same problem. Class 1 is assigned if:

$$P_r[1|a_1,a_2,...,a_k] = 1/\left(1 + \exp\left(-w_0 - w_1 a_1 - ... - w_k a_k\right)\right) = 0.5$$

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k > 0$$

The algorithm

1. Set all weights to zero
2. Until all instances in the training data are classified correctly
 - For each instance I in the training data
 - If I is classified incorrectly by the perceptron
 - If I belongs to the first class add it to the weight vector
 - else subtract it from the weight vector

- Why does this work?
 Consider situation where instance a pertaining to the first class has been added:

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

This means output for a has increased by:

$$a_0 a_0 + a_1 a_1 + a_2 a_2 + ... + a_k a_k$$

This number is always positive, thus the hyperplane has moved into the correct direction (and we can show output decreases for instances of other class)

Linear models: the perceptron

- Don’t actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane
- Assumption: data is linearly separable
- Algorithm for learning separating hyperplane: perceptron learning rule

$$0 = w_0 a_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

where we again assume that there is a constant attribute with value 1 (bias)

- If sum is greater than zero we predict the first class, otherwise the second class

Perceptron as a neural network

- Input layer
- Output layer
- Bias node
Linear models: Winnow

- Another *mistake-driven* algorithm for finding a separating hyperplane
 - Assumes binary data (i.e. attribute values are either zero or one)
- Difference: *multiplicative* updates instead of *additive* updates
 - Weights are multiplied by a user-specified parameter $\alpha > 1$ (or its inverse)
- Another difference: user-specified threshold parameter θ
 - Predict first class if $w_0 a_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k > \theta$

The algorithm

```python
while some instances are misclassified
  for each instance $a$ in the training data
    classify $a$ using the current weights
      if the predicted class is incorrect
        if $a$ belongs to the first class
          for each $a_i$ that is 1, multiply $w_i$ by alpha
            (if $a_i$ is 0, leave $w_i$ unchanged)
          otherwise
            for each $a_i$ that is 1, divide $w_i$ by alpha
              (if $a_i$ is 0, leave $w_i$ unchanged)
        otherwise
          for each $a_i$ that is 1, multiply $w_i$ by alpha
            (if $a_i$ is 0, leave $w_i$ unchanged)
    otherwise
      for each $a_i$ that is 1, multiply $w_i$ by alpha
        (if $a_i$ is 0, leave $w_i$ unchanged)
```

- Winnow is very effective in homing in on relevant features (*it is attribute efficient*)
- Can also be used in an on-line setting in which new instances arrive continuously (like the perceptron algorithm)

Balanced Winnow

- Winnow doesn’t allow negative weights and this can be a drawback in some applications
- *Balanced Winnow* maintains two weight vectors, one for each class:
 - Instance is classified as belonging to the first class (of two classes) if:
 $$ (w_0^+ - w_0^-) a_0 + (w_1^+ - w_1^-) a_1 + \ldots + (w_k^+ - w_k^-) a_k > \theta $$

Instance-based learning

- Distance function defines what’s learned
- Most instance-based schemes use *Euclidean distance*:
 $$ \sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \ldots + (a_k^{(1)} - a_k^{(2)})^2} $$
 $a^{(1)}$ and $a^{(2)}$: two instances with k attributes
- Taking the square root is not required when comparing distances
- Other popular metric: *city-block metric*
 - Adds differences without squaring them
Normalization and other issues

- Different attributes are measured on different scales ⇒ need to be normalized:
 \[a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \]

 \(v_i \): the actual value of attribute \(i \)

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbour: linear scan of the data
 - Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
- We will discuss two methods that represent training data in a tree structure:

 \(kD \)-trees and \(ball \) trees

\(kD \)-tree example

Using \(kD \)-trees: example
More on kD-trees

- Complexity depends on depth of tree, given by logarithm of number of nodes
- Amount of backtracking required depends on quality of tree (“square” vs. “skinny” nodes)
- How to build a good tree? Need to find good split point and split direction
 - Split direction: direction with greatest variance
 - Split point: median value along that direction
- Using value closest to mean (rather than median) can be better if data is skewed
- Can apply this recursively

Building trees incrementally

- Big advantage of instance-based learning: classifier can be updated incrementally
 - Just add new training instance!
- Can we do the same with kD-trees?
- Heuristic strategy:
 - Find leaf node containing new instance
 - Place instance into leaf if leaf is empty
 - Otherwise, split leaf according to the longest dimension (to preserve squareness)
- Tree should be re-built occasionally (i.e. if depth grows to twice the optimum depth)

Ball trees

- Problem in kD-trees: corners
- Observation: no need to make sure that regions don't overlap
- Can use balls (hyperspheres) instead of hyperrectangles
 - A *ball tree* organizes the data into a tree of k-dimensional hyperspheres
 - Normally allows for a better fit to the data and thus more efficient search

Ball tree example

- Problem in kD-trees: corners
- Observation: no need to make sure that regions don't overlap
- Can use balls (hyperspheres) instead of hyperrectangles
 - A *ball tree* organizes the data into a tree of k-dimensional hyperspheres
 - Normally allows for a better fit to the data and thus more efficient search
Using ball trees

- Nearest-neighbor search is done using the same backtracking strategy as in kD-trees
- Ball can be ruled out from consideration if: distance from target to ball’s center exceeds ball’s radius plus current upper bound

Building ball trees

- Ball trees are built top down (like kD-trees)
- Don’t have to continue until leaf balls contain just two points: can enforce minimum occupancy (same in kD-trees)
- Basic problem: splitting a ball into two
- Simple (linear-time) split selection strategy:
 - Choose point farthest from ball’s center
 - Choose second point farthest from first one
 - Assign each point to these two points
 - Compute cluster centers and radii based on the two subsets to get two balls

Discussion of nearest-neighbor learning

- Often very accurate
- Assumes all attributes are equally important
- Remedy: attribute selection or weights
- Possible remedies against noisy instances:
 - Take a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
- Statisticians have used k-NN since early 1950s
 - If $n \to \infty$ and $k/n \to 0$, error approaches minimum
 - kD-trees become inefficient when number of attributes is too large (approximately > 10)
 - Ball trees (which are instances of metric trees) work well in higher-dimensional spaces

More discussion

- Instead of storing all training instances, compress them into regions
- Example: hyperpipes (from discussion of 1R)
- Another simple technique (Voting Feature Intervals):
 - Construct intervals for each attribute
 - Discretize numeric attributes
 - Treat each value of a nominal attribute as an “interval”
 - Count number of times class occurs in interval
 - Prediction is generated by letting intervals vote (those that contain the test instance)
Clustering

- Clustering techniques apply when there is no class to be predicted
- Aim: divide instances into “natural” groups
- As we’ve seen clusters can be:
 - disjoint vs. overlapping
 - deterministic vs. probabilistic
 - flat vs. hierarchical
- We’ll look at a classic clustering algorithm called \(k \)-means
 - \(k \)-means clusters are disjoint, deterministic, and flat

The \(k \)-means algorithm

To cluster data into \(k \) groups:
(\(k \) is predefined)

0. Choose \(k \) cluster centers
 - e.g. at random

1. Assign instances to clusters
 - based on distance to cluster centers

2. Compute centroids of clusters

3. Go to step 1
 - until convergence

Discussion

- Algorithm minimizes squared distance to cluster centers
- Result can vary significantly
 - based on initial choice of seeds
- Can get trapped in local minimum
 - Example:
- To increase chance of finding global optimum: restart with different random seeds
- Can we applied recursively with \(k = 2 \)
Faster distance calculations

- Can we use *kD*-trees or ball trees to speed up the process? Yes:
 - First, build tree, which remains static, for all the data points
 - At each node, store number of instances and sum of all instances
 - In each iteration, descend tree and find out which cluster each node belongs to
 - Can stop descending as soon as we find out that a node belongs entirely to a particular cluster
 - Use statistics stored at the nodes to compute new cluster centers

Multi-instance learning

- Simplicity-first methodology can be applied to multi-instance learning with surprisingly good results
- Two simple approaches, both using standard single-instance learners:
 - Manipulate the input to learning
 - Manipulate the output of learning

Example

Aggregating the input

- Convert multi-instance problem into single-instance one
 - Summarize the instances in a bag by computing mean, mode, minimum and maximum as new attributes
 - “Summary” instance retains the class label of its bag
 - To classify a new bag the same process is used
- Results using summary instances with minimum and maximum + support vector machine classifier are comparable to special purpose multi-instance learners on original drug discovery problem
Aggregating the output

- Learn a single-instance classifier directly from the original instances in each bag
 - Each instance is given the class of the bag it originates from
- To classify a new bag:
 - Produce a prediction for each instance in the bag
 - Aggregate the predictions to produce a prediction for the bag as a whole
 - One approach: treat predictions as votes for the various class labels
 - A problem: bags can contain differing numbers of instances → give each instance a weight inversely proportional to the bag's size

Comments on basic methods

- Bayes' rule stems from his “Essay towards solving a problem in the doctrine of chances” (1763)
 - Difficult bit in general: estimating prior probabilities (easy in the case of naïve Bayes)
- Extension of naïve Bayes: Bayesian networks (which we'll discuss later)
- Algorithm for association rules is called APRIORI
- Minsky and Papert (1969) showed that linear classifiers have limitations, e.g. can’t learn XOR
 - But: combinations of them can (→ multi-layer neural nets, which we'll discuss later)