Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 7 of Data Mining by I. H. Witten, E. Frank and M. A. Hall

Data transformations
- Attribute selection
 - Scheme-independent, scheme-specific
- Attribute discretization
 - Unsupervised, supervised, error-vs-entropy-based, converse of discretization
- Projections
 - Principal component analysis, random projections, partial least-squares, text, time series
- Sampling
 - Reservoir sampling
- Dirty data
 - Data cleansing, robust regression, anomaly detection
- Transforming multiple classes to binary ones
 - Simple approaches, error-correcting codes, ensembles of nested dichotomies
- Calibrating class probabilities

Just apply a learner? NO!
- Scheme/parameter selection
 treat selection process as part of the learning process
- Modifying the input:
 - Data engineering to make learning possible or easier
- Modifying the output
 - Re-calibrating probability estimates

Attribute selection
- Adding a random (i.e. irrelevant) attribute can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
- Relevant attributes can also be harmful
Scheme-independent attribute selection

- **Filter** approach: assess based on general characteristics of the data
- One method: find smallest subset of attributes that separates data
- Another method: use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (**recursive feature elimination**)
- IBL-based attribute weighting techniques:
 - can’t find redundant attributes (but fix has been suggested)
- Correlation-based Feature Selection (CFS):
 - correlation between attributes measured by symmetric uncertainty:
 \[
 U(A, B) = 2^{\frac{H(A) + H(B) - H(A, B)}{H(A) + H(B)}} \in [0, 1]
 \]
 goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[
 \sum_j U(A_j, C) / \sqrt{\sum_i \sum_j U(A_i, A_j)}
 \]

Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms

Attribute subsets for weather data

- **Wrapper** approach to attribute selection
- Implement “wrapper” around learning scheme
 - Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, \(k\) attributes \(\Rightarrow\) \(k^2 \times \text{time}\)
 - prior ranking of attributes \(\Rightarrow\) linear in \(k\)
- Can use significance test to stop cross-validation for subset early if it is unlikely to “win” (**race search**)
 - can be used with forward, backward selection, prior ranking, or special-purpose **schemata search**
- Learning decision tables: scheme-specific attribute selection essential
 - Efficient for decision tables and Naïve Bayes
Attribute discretization

- Avoids normality assumption in Naïve Bayes and clustering
- 1R: uses simple discretization scheme
- C4.5 performs local discretization
- Global discretization can be advantageous because it's based on more data
- Apply learner to
 - k-valued discretized attribute or to
 - $k - 1$ binary attributes that code the cut points

Discretization: unsupervised

- Determine intervals without knowing class labels
 - When clustering, the only possible way!
- Two strategies:
 - Equal-interval binning
 - Equal-frequency binning (also called histogram equalization)
- Normally inferior to supervised schemes in classification tasks
 - But equal-frequency binning works well with naïve Bayes if number of intervals is set to square root of size of dataset (proportional k-interval discretization)

Discretization: supervised

- Entropy-based method
- Build a decision tree with pre-pruning on the attribute being discretized
 - Use entropy as splitting criterion
 - Use minimum description length principle as stopping criterion
- Works well: the state of the art
- To apply min description length principle:
 - The “theory” is
 - the splitting point ($\log_2(N - 1)$ bits)
 - plus class distribution in each subset
 - Compare description lengths before/after adding split

Example: temperature attribute
Formula for MDLP

- \(N \) instances
 - Original set: \(k \) classes, entropy \(E \)
 - First subset: \(k_1 \) classes, entropy \(E_1 \)
 - Second subset: \(k_2 \) classes, entropy \(E_2 \)

\[
gain > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2)-kE+k_1E_1+k_2E_2}{N}
\]

- Results in no discretization intervals for temperature attribute

Supervised discretization: other methods

- Can replace top-down procedure by bottom-up method
- Can replace MDLP by chi-squared test
- Can use dynamic programming to find optimum \(k \)-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy

Error-based vs. entropy-based

- Question: could the best discretization ever have two adjacent intervals with the same class?
- Wrong answer: No. For if so,
 - Collapse the two
 - Free up an interval
 - Use it somewhere else
 - *(This is what error-based discretization will do)*
- Right answer: Surprisingly, yes.
 - *(and entropy-based discretization can do it)*

A 2-class, 2-attribute problem

Entropy-based discretization can detect change of class distribution
The converse of discretization

- Make ordinal values into “numeric” ones

1. Indicator attributes (used by IB1)
 - Makes no use of potential ordering information
2. Code an ordinal attribute into binary ones (used by M5’)
 - Can be used for any ordered attribute
 - Better than coding ordering into an integer (which implies a metric)
- In general: code subset of attribute values as binary

Projections

- Simple transformations can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - Encoding cluster membership
 - Adding noise to data
 - Removing data randomly or selectively
 - Obfuscating the data

Principal component analysis

- Method for identifying the important “directions” in the data
- Can rotate data into (reduced) coordinate system that is given by those directions
- Algorithm:
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: find eigenvectors of covariance matrix by diagonalization
 - Eigenvectors (sorted by eigenvalues) are the directions
Example: 10-dimensional data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Variance</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.2%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>18.0%</td>
<td>79.2%</td>
</tr>
<tr>
<td>3</td>
<td>4.7%</td>
<td>83.9%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
<td>87.9%</td>
</tr>
<tr>
<td>5</td>
<td>3.2%</td>
<td>91.1%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>94.0%</td>
</tr>
<tr>
<td>7</td>
<td>2.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>9</td>
<td>1.4%</td>
<td>99.1%</td>
</tr>
<tr>
<td>10</td>
<td>0.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- Can transform data into space given by components
- Data is normally standardized for PCA
- Could also apply this recursively in tree learner

Partial least-squares regression

- PCA is often a pre-processing step before applying a learning algorithm
 - When linear regression is applied the resulting model is known as principal components regression
 - Output can be re-expressed in terms of the original attributes
- Partial least-squares differs from PCA in that it takes the class attribute into account
 - Finds directions that have high variance and are strongly correlated with the class

Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions (projections) instead of principle components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply kD-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections

Algorithm

1. Start with standardized input attributes
2. Attribute coefficients of the first PLS direction:
 - Compute the dot product between each attribute vector and the class vector in turn
3. Coefficients for next PLS direction:
 - Original attribute values are first replaced by difference (residual) between the attribute’s value and the prediction from a simple univariate regression that uses the previous PLS direction as a predictor of that attribute
 - Compute the dot product between each attribute’s residual vector and the class vector in turn
4. Repeat from 3
PLS Example (2 attributes only)

<table>
<thead>
<tr>
<th>Table 1.5 CPU Performance Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>MYCT</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>207</td>
</tr>
<tr>
<td>208</td>
</tr>
<tr>
<td>209</td>
</tr>
</tbody>
</table>

Table 7.1 First Five Instances from the CPU Performance Data

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chmin</td>
<td>chmax</td>
<td>prp</td>
</tr>
<tr>
<td>1.7889</td>
<td>1.7678</td>
<td>198</td>
</tr>
<tr>
<td>-0.4472</td>
<td>-0.3536</td>
<td>269</td>
</tr>
<tr>
<td>-0.4472</td>
<td>-0.3536</td>
<td>220</td>
</tr>
<tr>
<td>-0.4472</td>
<td>-0.3536</td>
<td>172</td>
</tr>
<tr>
<td>-0.4472</td>
<td>-0.7071</td>
<td>132</td>
</tr>
</tbody>
</table>

(a) original values, (b) first partial least-squares direction, and (c) residuals from the first direction.

Text to attribute vectors

- Many data mining applications involve textual data (e.g., string attributes in ARFF).
- Standard transformation: convert string into bag of words by *tokenization*.
 - Attribute values are binary, word frequencies (f_{ij}), log(1+f_{ij}), or TF x IDF: $f_{ij} \log \frac{\# \text{documents}}{\# \text{documents that include word } i}$
 - Only retain alphabetic sequences?
 - What should be used as delimiters?
 - Should words be converted to lowercase?
 - Should *stopwords* be ignored?
 - Should *hapax legomena* be included? Or even just the k most frequent words?

PLS Example (cont’d)

- PRP*CHMIN= -0.4472, PRP*CHMAX=22.981
 - PLS1= -0.4472 CHMIN + 22.981 CHMAX
- Univariate Regression:
 - CHMIN= 0.0438 PLS1
 - CHMAX=0.0444 PLS1
- PLS2= -23.6002 CHMIN -0.4593 CHMAX
- All attribute residuals are zero now
- Use PLS directions as input for linear regression: *partial least squares regression model*
- If all directions are used, result is the same as with original attributes

Time series

- In time series data, each instance represents a different time step.
- Some simple transformations:
 - Shift values from the past/future
 - Compute difference (delta) between instances (i.e. “derivative”) when transforming
- In some datasets, samples are not regular but time is given by *timestamp* attribute
 - Need to normalize by step size when transforming
- Transformations need to be adapted if attributes represent different time steps
Sampling

- Sampling is typically a simple procedure
- What if training instances arrive one by one but we don't know the total number in advance?
 - Or perhaps there are so many that it is impractical to store them all before sampling?
- Is it possible to produce a uniformly random sample of a fixed size? Yes.
- Reservoir sampling
 - Fill the reservoir, of size \(r \), with the first \(r \) instances to arrive
 - Subsequent instances replace a randomly selected reservoir element with probability \(r/i \), where \(i \) is the number of instances seen so far

Automatic data cleansing

- To improve a decision tree:
 - Remove misclassified instances, then re-learn!
- Better (of course!):
 - Human expert checks misclassified instances
- Attribute noise vs class noise
 - Attribute noise should be left in training set (don't train on clean set and test on dirty one)
 - Systematic class noise (e.g. one class substituted for another): leave in training set
 - Unsystematic class noise: eliminate from training set, if possible

Robust regression

- “Robust” statistical method ⇒ one that addresses problem of outliers
- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g. 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in \(x \) and \(y \) direction)
 - Finds narrowest strip covering half the observations

Example: least median of squares

Number of international phone calls from Belgium, 1950–1973
Detecting anomalies

- Visualization can help to detect anomalies
- Automatic approach: committee of different learning schemes
 - E.g.
 - decision tree
 - nearest-neighbor learner
 - linear discriminant function
 - Conservative approach: delete instances incorrectly classified by all of them
 - Problem: might sacrifice instances of small classes

One-Class Learning

- Usually training data is available for all classes
- Some problems exhibit only a single class at training time
 - Test instances may belong to this class or a new class not present at training time
- One-class classification
 - Predict either target or unknown
- Some problems can be re-formulated into two-class ones
- Other applications truly don't have negative data
 - E.g. password hardening

Outlier detection

- One-class classification is often called outlier/novelty detection
- Generic approach: identify outliers as instances that lie beyond distance \(d \) from percentage \(p \) of the training data
- Alternatively, estimate density of the target class and mark low probability test instances as outliers
 - Threshold can be adjusted to obtain a suitable rate of outliers

Generating artificial data

- Another possibility is to generate artificial data for the outlier class
 - Can then apply any off-the-shelf classifier
 - Can tune rejection rate threshold if classifier produces probability estimates
- Generate uniformly random data
 - Too much will overwhelm the target class!
 - Can be avoided if learning accurate probabilities rather than minimizing classification error
 - Curse of dimensionality – as # attributes increase it becomes infeasible to generate enough data to get good coverage of the space
Generating artificial data

- Generate data that is close to the target class
 - No longer uniformly distributed and must take this distribution into account when computing membership scores for the one-class model
- T – target class, A – artificial class. Want $Pr[X | T]$, for any instance X; we know $Pr[X | A]$
- Combine some amount of A with instances of T and use a class probability estimator to estimate $Pr[T | X]$; then by Bayes’ rule:
 $$Pr[X | T] = \frac{(1 - Pr[T])Pr[X | T]}{Pr[T]Pr[T | X]} Pr[X | A]$$
- For classification, choose a threshold to tune rejection rate
- How to choose $Pr[X | A]$? Apply a density estimator to the target class and use resulting function to model the artificial class

Transforming multiple classes to binary ones

- Some learning algorithms only work with two class problems
 - Sophisticated multi-class variants exist in many cases but can be very slow or difficult to implement
- A common alternative is to transform multi-class problems into multiple two-class ones
- Simple methods
 - Discriminate each class against the union of the others – one-vs.-rest
 - Build a classifier for every pair of classes – pairwise classification

Error-correcting output codes

- Multiclass problem \Rightarrow binary problems
- Simple one-vs.rest scheme: One-per-class coding
- Idea: use error-correcting codes instead
- base classifiers predict 1011111, true class = ??
- Use code words that have large Hamming distance between any pair
- Can correct up to $(d - 1)/2$ single-bit errors

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
</tr>
<tr>
<td>d</td>
<td>0001</td>
</tr>
</tbody>
</table>

More on ECOCs

- Two criteria:
 - **Row separation**: minimum distance between rows
 - **Column separation**: minimum distance between columns
 - (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated
- 3 classes \Rightarrow only 2^3 possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation
 - Only works for problems with > 3 classes
Exhaustive ECOCs

- **Exhaustive code for** k **classes:**
 - Columns comprise every possible k-string …
 - … except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} - 1$ bits
 - Class 1: code word is all ones
 - Class 2: 2^{k-2} zeroes followed by $2^{k-2} - 1$ ones
 - Class i: alternating runs of 2^{k-i} 0s and 1s
 - last run is one short

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>

More on ECOCs

- More classes \Rightarrow exhaustive codes infeasible
 - Number of columns increases exponentially
 - Random code words have good error-correcting properties on average!
 - There are sophisticated methods for generating ECOCs with just a few columns
 - ECOCs don’t work with NN classifier
 - But: works if different attribute subsets are used to predict each output bit

Ensembles of nested dichotomies

- ECOCs produce classifications, but what if we want class probability estimates as well?
 - e.g. for cost-sensitive classification via minimum expected cost
- **Nested dichotomies**
 - Decomposes multi-class to binary
 - Works with two-class classifiers that can produce class probability estimates
 - Recursively split the full set of classes into smaller and smaller subsets, while splitting the full dataset of instances into subsets corresponding to these subsets of classes
 - Yields a binary tree of classes called a nested dichotomy

Example

Full set of classes: $[a, b, c, d]$

Two disjoint subsets: $[a, c] \quad [b, d]$

<table>
<thead>
<tr>
<th>Class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>
Probability estimation

- Suppose we want to compute \(\Pr[a \mid x] \)?
 - Learn two class models for each of the three internal nodes
 - From the two-class model at the root: \(\Pr[a, c \mid x] \)
 - From the left-hand child of the root: \(\Pr[a \mid x, \{a, c\}] \)
 - Using the chain rule:
 \[
 \Pr[a \mid x] = \Pr[a \mid \{a, c\}, x] \times \Pr[\{a, c\} \mid x]
 \]

- Issues
 - Estimation errors for deep hierarchies
 - How to decide on hierarchical decomposition of classes?

Ensembles of nested dichotomies

- If there is no reason a priori to prefer any particular decomposition then use them all
 - Impractical for any non-trivial number of classes
- Consider a subset by taking a random sample of possible tree structures
 - Caching of models (since a given two class problem may occur in multiple trees)
 - Average probability estimates over the trees
 - Experiments show that this approach yields accurate multiclass classifiers
 - Can even improve the performance of methods that can already handle multiclass problems!

Calibrating class probabilities

- Class probability estimation is harder than classification
 - Classification error is minimized as long as the correct class is predicted with max probability
 - Estimates that yield correct classification may be quite poor with respect to quadratic or informational loss
- Often important to have accurate class probabilities
 - e.g. cost-sensitive prediction using the minimum expected cost method

Calibrating class probabilities

- Consider a two class problem. Probabilities that are correct for classification may be:
 - Too optimistic – too close to either 0 or 1
 - Too pessimistic – not close enough to 0 or 1

Reliability diagram showing overoptimistic probability estimation for a two-class problem
Calibrating class probabilities

- Reliability diagram generated by collecting predicted probabilities and relative frequencies from a 10-fold cross-validation
 - Predicted probabilities discretized into 20 ranges via equal-frequency discretization
 - Correct bias by using post-hoc calibration to map observed curve to the diagonal
 - A rough approach can use the data from the reliability diagram directly
- Discretization-based calibration is fast...
 - But determining the appropriate number of discretization intervals is not easy

View as a function estimation problem

- One input – estimated class probability – and one output – the calibrated probability
- Assuming the function is piecewise constant and monotonically increasing
 - *Isotonic regression* minimizes the squared error between observed class “probabilities (0/1) and resulting calibrated class probabilities
 - Alternatively, use *logistic regression* to estimate the calibration function
 - Must use the *log-odds* of the estimated class probabilities as input
 - Multiclass logistic regression can be used for calibration in the multiclass case