Data Mining
Practical Machine Learning Tools and Techniques
Slides for Chapter 8 of *Data Mining* by I. H. Witten, E. Frank and M. A. Hall

Ensemble learning

- Combining multiple models
 - The basic idea
- Bagging
 - Bias-variance decomposition, bagging with costs
- Randomization
 - Random forests, Rotation forests
- Boosting
 - AdaBoost, the power of boosting
- Additive regression
 - Numeric prediction, additive logistic regression
- Interpretable ensembles
 - Option trees, alternating decision trees, logistic model trees
- Stacking

Combining multiple models

- **Basic idea:**
 - build different “experts”, let them vote
- **Advantage:**
 - often improves predictive performance
- **Disadvantage:**
 - usually produces output that is very hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure

Bagging

- Combining predictions by voting/averaging
 - Simplest way
 - Each model receives equal weight
 - “Idealized” version:
 - Sample several training sets of size \(n \) (instead of just having one training set of size \(n \))
 - Build a classifier for each training set
 - Combine the classifiers’ predictions
 - Learning scheme is \(\text{unstable} \Rightarrow \)
 - almost always improves performance
 - Small change in training data can make big change in model (e. g. decision trees)
Bias-variance decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets of size n
- For any learning scheme,
 - $\text{Bias} = \text{expected error of the combined classifier on new data}$
 - $\text{Variance} = \text{expected error due to the particular training set used}$
- Total expected error $\approx \text{bias} + \text{variance}$

More on bagging

- Bagging works because it reduces variance by voting/averaging
 - Note: in some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
- Problem: we only have one dataset!
- Solution: generate new ones of size n by sampling from it with replacement
 - Can help a lot if data is noisy
 - Can also be applied to numeric prediction
 - Aside: bias-variance decomposition originally only known for numeric prediction

Bagging classifiers

Model generation

Let n be the number of instances in the training data
For each of t iterations:
 - Sample n instances from training set (with replacement)
 - Apply learning algorithm to the sample
 - Store resulting model

Classification

For each of the t models:
 - Predict class of instance using model
 - Return class that is predicted most often

Bagging with costs

- Bagging unpruned decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates are averaged
 - Note: this can also improve the success rate
- Can use this with minimum-expected cost approach for learning problems with costs
- Problem: not interpretable
 - MetaCost re-labels training data using bagging with costs and then builds single tree
Randomization

- Can randomize learning algorithm instead of input
- Some algorithms already have a random component: e.g. initial weights in neural net
- Most algorithms can be randomized, e.g. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - E.g.: attribute selection in decision trees
- More generally applicable than bagging: e.g. random subsets in nearest-neighbor scheme
- Can be combined with bagging

Random forests, rotation forests

- Bagging creates ensembles of accurate classifiers with relatively low diversity
 - Bootstrap sampling creates training sets with a distribution that resembles the original data
- Randomness in the learning algorithm increases diversity but sacrifices accuracy of individual ensemble members
- Random and rotation forests have the goal of creating accurate and diverse ensemble members

Random forests

- Combine random attribute sets and bagging to generate an ensemble of decision trees
- An iteration involves
 - Generate Bootstrap sample
 - When constructing the decision tree, randomly choose one of the k best attributes

Rotation forests

- Combine random attribute sets, bagging and principal components to generate an ensemble of decision trees
- An iteration involves
 - Randomly dividing the input attributes into k disjoint subsets
 - Applying PCA to each of the k subsets in turn
 - Learning a decision tree from the k sets of PCA directions
- Further increases in diversity can be achieved by creating a bootstrap sample in each iteration before applying PCA
Boosting

- Also uses voting/averaging
- Weights models according to performance
- Iterative: new models are influenced by performance of previously built ones
 - Encourage new model to become an “expert” for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
- Several variants

AdaBoost.M1

Model generation

| Assign equal weight to each training instance |
| For \(t \) iterations: |
| Apply learning algorithm to weighted dataset, store resulting model |
| Compute model’s error \(e \) on weighted dataset |
| If \(e = 0 \) or \(e \geq 0.5 \): |
| Terminate model generation |
| For each instance in dataset: |
| If classified correctly by model: |
| Multiply instance’s weight by \(e/(1-e) \) |
| Normalize weight of all instances |

Classification

| Assign weight = 0 to all classes |
| For each of the \(t \) (or less) models: |
| For the class this model predicts |
| add \(-\log e/(1-e)\) to this class’s weight |
| Return class with highest weight |

More on boosting I

- Boosting needs weights … but
- Can adapt learning algorithm … or
- Can apply boosting *without* weights
 - resample with probability determined by weights
 - disadvantage: not all instances are used
 - advantage: if error > 0.5, can resample again
- Stems from *computational learning theory*
- Theoretical result:
 - training error decreases exponentially
- Also:
 - works if base classifiers are not too complex, and
 - their error doesn’t become too large too quickly

More on boosting II

- Continue boosting after training error = 0?
- Puzzling fact:
 generalization error continues to decrease!
 - Seems to contradict Occam’s Razor
- Explanation:
 consider *margin* (confidence), not error
 - Difference between estimated probability for true class and nearest other class (between –1 and 1)
- Boosting works with *weak* learners
 only condition: error doesn’t exceed 0.5
- In practice, boosting sometimes overfits (in contrast to bagging)
Additive regression I

- Turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, implements *forward stagewise additive modeling*
- Same kind of algorithm for numeric prediction:
 1. Build standard regression model (e.g., tree)
 2. Gather residuals, learn model predicting residuals (e.g., tree), and repeat
- To predict, simply sum up individual predictions from all models

Additive regression II

- Minimizes squared error of ensemble if base learner minimizes squared error
- Doesn’t make sense to use it with standard multiple linear regression, why?
- Can use it with *simple* linear regression to build multiple linear regression model
- Use cross-validation to decide when to stop
- Another trick: shrink predictions of the base models by multiplying with positive constant < 1
 - Caveat: need to start with model 0 that predicts the mean

Additive logistic regression

- Can use the logit transformation to get algorithm for classification
 - More precisely, class probability estimation
 - Probability estimation problem is transformed into regression problem
 - Regression scheme is used as base learner (e.g., regression tree learner)
- Can use forward stagewise algorithm: at each stage, add model that maximizes probability of data
- If \(f_j \) is the \(j \)th regression model, the ensemble predicts probability
 \[
p(1|\tilde{a}) = \frac{1}{1 + \exp(-\sum f_j(\tilde{a}))}
\]
 for the first class

LogitBoost

Model generation

For \(j = 1 \) to \(t \) iterations:

For each instance \(a[i] \):
- Set the target value for the regression to \(z[i] = (y[i] - p(1|a[i])) / (p(1|a[i]) \times (1-p(1|a[i]))) \)
- Set the weight of instance \(a[i] \) to \(p(1|a[i]) \times (1-p(1|a[i])) \)
- Fit a regression model \(f[j] \) to the data with class values \(z[i] \) and weights \(w[i] \)

Classification

- Predict 1\(^{st}\) class if \(p(1|a) > 0.5 \), otherwise predict 2\(^{nd}\) class

- Maximizes probability if base learner minimizes squared error
- Difference to AdaBoost: optimizes probability/likelihood instead of exponential loss
- Can be adapted to multi-class problems
- Shrinking and cross-validation-based selection apply
Option trees

- Ensembles are not interpretable
- Can we generate a single model?
 - One possibility: “cloning” the ensemble by using lots of artificial data that is labeled by ensemble
 - Another possibility: generating a single structure that represents ensemble in compact fashion
- **Option tree**: decision tree with option nodes
 - Idea: follow all possible branches at option node
 - Predictions from different branches are merged using voting or by averaging probability estimates

Example

Ex.: -overcast, high, false
-0.255
+0.213
+0.486
-0.331
=0.113

Alternating decision trees

- Can also grow option tree by incrementally adding nodes to it
- Structure called **alternating decision tree**, with splitter nodes and prediction nodes
 - Prediction nodes are leaves if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems
 - To obtain prediction, filter instance down all applicable branches and sum predictions
 - Predict one class or the other depending on whether the sum is positive or negative
Growing alternating trees

- Tree is grown using a boosting algorithm
 - E.g. LogitBoost described earlier
 - Assume that base learner produces single conjunctive rule in each boosting iteration (note: rule for regression)
 - Each rule could simply be added into the tree, including the numeric prediction obtained from the rule
- Problem: tree would grow very large very quickly
- Solution: base learner should only consider candidate rules that extend existing branches
 - Extension adds splitter node and two prediction nodes (assuming binary splits)
 - Standard algorithm chooses best extension among all possible extensions applicable to tree
 - More efficient heuristics can be employed instead

Logistic model trees

- Option trees may still be difficult to interpret
- Can also use boosting to build decision trees with linear models at the leaves (i.e. trees without options)
- Algorithm for building logistic model trees:
 - Run LogitBoost with simple linear regression as base learner (choosing the best attribute in each iteration)
 - Interrupt boosting when cross-validated performance of additive model no longer increases
 - Split data (e.g. as in C4.5) and resume boosting in subsets of data
 - Prune tree using cross-validation-based pruning strategy (from CART tree learner)

Stacking

- To combine predictions of base learners, don’t vote, use meta learner
 - Base learners: level-0 models
 - Meta learner: level-1 model
 - Predictions of base learners are input to meta learner
- Base learners are usually different schemes
- Can’t use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Hard to analyze theoretically: “black magic”

More on stacking

- If base learners can output probabilities, use those as input to meta learner instead
- Which algorithm to use for meta learner?
 - In principle, any learning scheme
 - Prefer “relatively global, smooth” model
 - Base learners do most of the work
 - Reduces risk of overfitting
- Stacking can be applied to numeric prediction too