Data Mining: Practical Machine Learning Tools and Techniques

Slides for Chapter 7 of *Data Mining* by I. H. Witten, E. Frank and M. A. Hall

Data transformations

- **Attribute selection**
 - Scheme-independent, scheme-specific
- **Attribute discretization**
 - Unsupervised, supervised, error- vs entropy-based, converse of discretization
- **Projections**
 - Principal component analysis, random projections, partial least-squares, text, time series
- **Sampling**
 - Reservoir sampling
- **Dirty data**
 - Data cleansing, robust regression, anomaly detection
- **Transforming multiple classes to binary ones**
 - Simple approaches, error-correcting codes, ensembles of nested dichotomies
- **Calibrating class probabilities**

Just apply a learner? NO!

- **Scheme/parameter selection**
 - *treat selection process as part of the learning process*
- **Modifying the input:**
 - Data engineering to make learning possible or easier
- **Modifying the output**
 - Re-calibrating probability estimates

Attribute selection

- **Adding a random (i.e. irrelevant) attribute** can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- **IBL very susceptible to irrelevant attributes**
 - Number of training instances required increases exponentially with number of irrelevant attributes
- **Naïve Bayes doesn’t have this problem**
- **Relevant** attributes can also be harmful
 (Chosen high up in the tree, fragments instance set)
Scheme-independent attribute selection

- **Filter** approach: assess based on general characteristics of the data
- One method: find smallest subset of attributes that separates data
- Another method: use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (recursive feature elimination)
- IBL-based attribute weighting techniques:
 - can’t find redundant attributes (but fix has been suggested)
- Correlation-based Feature Selection (CFS):
 - correlation between attributes measured by symmetric uncertainty:
 \[
 U(A,B) = 2^\frac{H(A) + H(B) - H(A,B)}{H(A) + H(B)} \in [0,1]
 \]
 - goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[
 \sum_j U(A_j,C) / \sqrt{\sum_i \sum_j U(A_i,A_j)}
 \]

Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms

Attribute subsets for weather data

- **Wrapper** approach to attribute selection
- Implement “wrapper” around learning scheme
 - Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, \(k \) attributes \(\Rightarrow k^2 \times \text{time} (k + k-1 + k-2 +...) \)
 - prior ranking of attributes \(\Rightarrow \) linear in \(k \)
- Can use significance test to stop cross-validation for subset early if it is unlikely to “win” (race search)
 - can be used with forward, backward selection, prior ranking, or special-purpose schemata search
- Learning decision tables: scheme-specific attribute selection essential
- Efficient for decision tables and Naïve Bayes
Attribute discretization

- Avoids normality assumption in Naïve Bayes and clustering
- 1R: uses simple discretization scheme
- C4.5 performs *local* discretization
- *Global* discretization can be advantageous because it’s based on more data
- Apply learner to
 - k-valued discretized attribute or to
 - k – 1 binary attributes that code the cut points

Discretization: unsupervised

- Determine intervals without knowing class labels
 - When clustering, the only possible way!
- Two strategies:
 - *Equal-interval binning*
 - *Equal-frequency binning* (also called histogram *equalization*)
- Normally inferior to supervised schemes in classification tasks
 - But equal-frequency binning works well with naïve Bayes if number of intervals is set to square root of size of dataset (*proportional k-interval discretization*)

Discretization: supervised

- *Entropy-based* method
- Build a decision tree with pre-pruning on the attribute being discretized
 - Use entropy as splitting criterion
 - Use minimum description length principle as stopping criterion
- Works well: the state of the art
- To apply min description length principle:
 - The “theory” is
 - the splitting point (log₂[N – 1] bits)
 - plus class distribution in each subset
 - Compare description lengths before/after adding split

Example: temperature attribute

```
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>Yes</td>
</tr>
<tr>
<td>69</td>
<td>Yes</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>71</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>No</td>
</tr>
<tr>
<td>73</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>76</td>
<td>No</td>
</tr>
<tr>
<td>77</td>
<td>Yes</td>
</tr>
<tr>
<td>78</td>
<td>Yes</td>
</tr>
<tr>
<td>79</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Yes</td>
</tr>
<tr>
<td>82</td>
<td>Yes</td>
</tr>
<tr>
<td>83</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>Yes</td>
</tr>
<tr>
<td>85</td>
<td>No</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>Yes</td>
</tr>
<tr>
<td>69</td>
<td>Yes</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>71</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>No</td>
</tr>
<tr>
<td>73</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>76</td>
<td>No</td>
</tr>
<tr>
<td>77</td>
<td>Yes</td>
</tr>
<tr>
<td>78</td>
<td>Yes</td>
</tr>
<tr>
<td>79</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Yes</td>
</tr>
<tr>
<td>82</td>
<td>Yes</td>
</tr>
<tr>
<td>83</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>Yes</td>
</tr>
<tr>
<td>69</td>
<td>Yes</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>71</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>No</td>
</tr>
<tr>
<td>73</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>76</td>
<td>No</td>
</tr>
<tr>
<td>77</td>
<td>Yes</td>
</tr>
<tr>
<td>78</td>
<td>Yes</td>
</tr>
<tr>
<td>79</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Yes</td>
</tr>
<tr>
<td>82</td>
<td>Yes</td>
</tr>
<tr>
<td>83</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>65</td>
<td>Yes</td>
</tr>
<tr>
<td>68</td>
<td>Yes</td>
</tr>
<tr>
<td>69</td>
<td>Yes</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>71</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>No</td>
</tr>
<tr>
<td>73</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>76</td>
<td>No</td>
</tr>
<tr>
<td>77</td>
<td>Yes</td>
</tr>
<tr>
<td>78</td>
<td>Yes</td>
</tr>
<tr>
<td>79</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Yes</td>
</tr>
<tr>
<td>82</td>
<td>Yes</td>
</tr>
<tr>
<td>83</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```
Formula for MDLP

- \(N \) instances
- Original set: \(k \) classes, entropy \(E \)
- First subset: \(k_1 \) classes, entropy \(E_1 \)
- Second subset: \(k_2 \) classes, entropy \(E_2 \)

\[
\text{gain} > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k - 2) - kE + k_1E_1 + k_2E_2}{N}
\]

- Results in no discretization intervals for temperature attribute

Supervised discretization: other methods

- Can replace top-down procedure by bottom-up method
- Can replace MDLP by chi-squared test
- Can use dynamic programming to find optimum \(k \)-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy

Error-based vs. entropy-based

- Question: could the best discretization ever have two adjacent intervals with the same class?
- Wrong answer: No. For if so,
 - Collapse the two
 - Free up an interval
 - Use it somewhere else
 - *(This is what error-based discretization will do)*
- Right answer: Surprisingly, yes.
 - *(and entropy-based discretization can do it)*

A 2-class, 2-attribute problem

Entropy-based discretization can detect change of class distribution
The converse of discretization

Make ordinal values into “numeric” ones
 • Indicator attributes (used by IB1)
 • Makes no use of potential ordering information
 • Code an ordinal attribute into binary ones (used by M5’)
 • Can be used for any ordered attribute
 • Better than coding ordering into an integer (which implies a metric)
 • In general: code subset of attribute values as binary

Projections

• Simple transformations can often make a large difference in performance
 • Example transformations (not necessarily for performance improvement):
 • Difference of two date attributes
 • Ratio of two numeric (ratio-scale) attributes
 • Concatenating the values of nominal attributes
 • Encoding cluster membership
 • Adding noise to data
 • Removing data randomly or selectively
 • Obfuscating the data

Principal component analysis

• Method for identifying the important “directions” in the data
 • Can rotate data into (reduced) coordinate system that is given by those directions
 • Algorithm:
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
• Implementation: find eigenvectors of covariance matrix by diagonalization
 • Eigenvectors (sorted by eigenvalues) are the directions

PCA Example
Example: 10-dimensional data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Variance</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.2%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>18.0%</td>
<td>79.2%</td>
</tr>
<tr>
<td>3</td>
<td>4.7%</td>
<td>83.9%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
<td>87.9%</td>
</tr>
<tr>
<td>5</td>
<td>3.2%</td>
<td>91.1%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>94.0%</td>
</tr>
<tr>
<td>7</td>
<td>2.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>9</td>
<td>1.4%</td>
<td>99.1%</td>
</tr>
<tr>
<td>10</td>
<td>0.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- Can transform data into space given by components
- Data is normally standardized for PCA
- Could also apply this recursively in tree learner

Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions (projections) instead of principle components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply kD-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections

Partial least-squares regression

- PCA is often a pre-processing step before applying a learning algorithm
 - When linear regression is applied the resulting model is known as principal components regression
 - Output can be re-expressed in terms of the original attributes
- Partial least-squares differs from PCA in that it takes the class attribute into account
 - Finds directions that have high variance and are strongly correlated with the class

Algorithm

1. Start with standardized input attributes
2. Attribute coefficients of the first PLS direction:
 - Compute the dot product between each attribute vector and the class vector in turn
3. Coefficients for next PLS direction:
 - Original attribute values are first replaced by difference (residual) between the attribute's value and the prediction from a simple univariate regression that uses the previous PLS direction as a predictor of that attribute
 - Compute the dot product between each attribute's residual vector and the class vector in turn
4. Repeat from 3
PLS Example (2 attributes only)

<table>
<thead>
<tr>
<th>Cycle Time (ms)</th>
<th>Min</th>
<th>Max</th>
<th>Cache (KB)</th>
<th>Min</th>
<th>Max</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYCT</td>
<td>MMIN</td>
<td>MMAX</td>
<td>GACH</td>
<td>CHMIN</td>
<td>CHMAX</td>
<td>PRP</td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>256</td>
<td>600</td>
<td>256</td>
<td>16</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>8000</td>
<td>32,000</td>
<td>32</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>8000</td>
<td>32,000</td>
<td>32</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>8000</td>
<td>32,000</td>
<td>32</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>8000</td>
<td>16,000</td>
<td>32</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>207</td>
<td>125</td>
<td>3200</td>
<td>8000</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>208</td>
<td>480</td>
<td>512</td>
<td>8000</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>209</td>
<td>480</td>
<td>1000</td>
<td>4000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7.1 First Five Instances from the CPU Performance Data

- (a) original values, (b) first partial least-squares direction, and (c) residuals from the first direction.

PLS Example (cont’d)

- PRP*CHMIN = -0.4472, PRP*CHMAX = 22.981
- PLS1 = -0.4472 CHMIN + 22.981 CHMAX

Univariate Regression:
- CHMIN = 0.0438 PLS1
- CHMAX = 0.0444 PLS1

- PLS2 = -23.6002 CHMIN - 0.4593 CHMAX

- All attribute residuals are zero now

- Use PLS directions as input for linear regression: *partial least squares regression model*

- If all directions are used, result is the same as with original attributes

Text to attribute vectors

- Many data mining applications involve textual data (e.g. string attributes in ARFF)
- Standard transformation: convert string into bag of words by *tokenization*
 - Attribute values are binary, word frequencies (f_{ij}),
 - \(\log(1 + f_{ij}) \), or TF-IDF: \(f_{ij} \log \frac{\# \text{documents}}{\# \text{documents that include word } i} \)
- Only retain alphabetic sequences?
- What should be used as delimiters?
- Should words be converted to lowercase?
- Should *stopwords* be ignored?
- Should *hapax legomena* be included? Or even just the k most frequent words?

Time series

- In time series data, each instance represents a different time step
- Some simple transformations:
 - Shift values from the past/future
 - Compute difference (*delta*) between instances (i.e. “derivative”)
- In some datasets, samples are not regular but time is given by *timestamp* attribute
 - Need to normalize by step size when transforming
- Transformations need to be adapted if attributes represent different time steps
Sampling

- Sampling is typically a simple procedure
- What if training instances arrive one by one but we don’t know the total number in advance?
 - Or perhaps there are so many that it is impractical to store them all before sampling?
- Is it possible to produce a uniformly random sample of a fixed size? Yes.
 - Reservoir sampling
 - Fill the reservoir, of size r, with the first r instances to arrive
 - Subsequent instances replace a randomly selected reservoir element with probability r/i, where i is the number of instances seen so far

Automatic data cleansing

- To improve a decision tree:
 - Remove misclassified instances, then re-learn!
- Better (of course!):
 - Human expert checks misclassified instances
- Attribute noise vs class noise
 - Attribute noise should be left in training set (don’t train on clean set and test on dirty one)
 - Systematic class noise (e.g. one class substituted for another): leave in training set
 - Unsystematic class noise: eliminate from training set, if possible

Robust regression

- “Robust” statistical method ⇒ one that addresses problem of outliers
- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g. 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in x and y direction)
 - Finds narrowest strip covering half the observations

Example: least median of squares

Number of international phone calls from Belgium, 1950–1973
Detecting anomalies

- Visualization can help to detect anomalies
 http://ivmooc.cns.iu.edu/
- Automatic approach: committee of different learning schemes
 - E.g.
 - decision tree
 - nearest-neighbor learner
 - linear discriminant function
- Conservative approach: delete instances incorrectly classified by all of them
 - Problem: might sacrifice instances of small classes

One-Class Learning

- Usually training data is available for all classes
- Some problems exhibit only a single class at training time
 - Test instances may belong to this class or a new class not present at training time
- One-class classification
 - Predict either target or unknown
 - Some problems can be re-formulated into two-class ones
 - Other applications truly don't have negative data
 - E.g. password hardening

Outlier detection

- One-class classification is often called outlier/novelty detection
- Generic approach: identify outliers as instances that lie beyond distance d from percentage p of the training data
- Alternatively, estimate density of the target class and mark low probability test instances as outliers
 - Threshold can be adjusted to obtain a suitable rate of outliers

Generating artificial data

- Another possibility is to generate artificial data for the outlier class
 - Can then apply any off-the-shelf classifier
 - Can tune rejection rate threshold if classifier produces probability estimates
- Generate uniformly random data
 - Too much will overwhelm the target class!
 - Can be avoided if learning accurate probabilities rather than minimizing classification error
 - Curse of dimensionality – as # attributes increase it becomes infeasible to generate enough data to get good coverage of the space
Generating artificial data

- Generate data that is close to the target class
 - No longer uniformly distributed and must take this distribution into account when computing membership scores for the one-class model
- \(T \) – target class, \(A \) – artificial class. Want \(\Pr[X|T] \), for any instance \(X \); we know \(\Pr[X|A] \)
- Combine some amount of \(A \) with instances of \(T \) and use a class probability estimator to estimate \(\Pr[T|X] \); then by Bayes’ rule:
 \[
 \Pr[X|T] = \frac{(1-\Pr(T))\Pr[T|X]}{\Pr(T)(1-\Pr[T|X])} \Pr[X|A]
 \]
- For classification, choose a threshold to tune rejection rate
- How to choose \(\Pr[X|A] \)? Apply a density estimator to the target class and use resulting function to model the artificial class

Transforming multiple classes to binary ones

- Some learning algorithms only work with two class problems
 - Sophisticated multi-class variants exist in many cases but can be very slow or difficult to implement
- A common alternative is to transform multi-class problems into multiple two-class ones
- Simple methods
 - Discriminate each class against the union of the others – one-vs.-rest
 - Build a classifier for every pair of classes – pairwise classification

Error-correcting output codes

- Multiclass problem \(\Rightarrow \) binary problems
- Simple one-vs.rest scheme: One-per-class coding
 - Idea: use error-correcting codes instead
 - base classifiers predict 1011111, true class = ??
- Use code words that have large Hamming distance between any pair
 - Can correct up to \((d - 1)/2\) single-bit errors

More on ECOCs

- Two criteria:
 - Row separation: minimum distance between rows
 - Column separation: minimum distance between columns
 - (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated
- 3 classes \(\Rightarrow \) only \(2^3 \) possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation
 - Only works for problems with > 3 classes
Exhaustive ECOCs

Exhaustive code for k **classes:**
- Columns comprise every possible k-string ...
- ... except for complements and all-zero/one strings
- Each code word contains $2^{k-1} - 1$ bits

<table>
<thead>
<tr>
<th>Class</th>
<th>Class Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>

- Class 1: code word is all ones
- Class 2: 2^{k-2} zeroes followed by $2^{k-2} - 1$ ones
- Class i: alternating runs of $2^{k-i}0$s and 1s
- last run is one short

More on ECOCs

More classes \Rightarrow exhaustive codes infeasible
- Number of columns increases exponentially
- Random code words have good error-correcting properties on average!
- There are sophisticated methods for generating ECOCs with just a few columns
- ECOCs don’t work with NN classifier
- But: works if different attribute subsets are used to predict each output bit

Ensembles of nested dichotomies

- ECOCs produce classifications, but what if we want class probability estimates as well?
 - e.g. for cost-sensitive classification via minimum expected cost
- **Nested dichotomies**
 - Decomposes multi-class to binary
 - Works with two-class classifiers that can produce class probability estimates
 - Recursively split the full set of classes into smaller and smaller subsets, while splitting the full dataset of instances into subsets corresponding to these subsets of classes
 - Yields a binary tree of classes called a nested dichotomy

Example

Full set of classes: \[\{a, b, c, d\} \]

Two disjoint subsets:
- [a, c]
- [b, d]

Nested dichotomy as a code matrix:

<table>
<thead>
<tr>
<th>Class</th>
<th>Class Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0 0 X</td>
</tr>
<tr>
<td>b</td>
<td>1 X 0</td>
</tr>
<tr>
<td>c</td>
<td>0 1 X</td>
</tr>
<tr>
<td>d</td>
<td>1 X 1</td>
</tr>
</tbody>
</table>
Probability estimation

- Suppose we want to compute $\Pr(a \mid x)$?
 - Learn two class models for each of the three internal nodes
 - From the two-class model at the root: $\Pr([a, c] \mid x)$
 - From the left-hand child of the root: $\Pr([a] \mid x, [a, c])$
 - Using the chain rule:
 $$\Pr([a] \mid x) = \Pr([a] \mid [a, c], x) \times \Pr([a, c] \mid x)$$

- Issues
 - Estimation errors for deep hierarchies
 - How to decide on hierarchical decomposition of classes?

Ensembles of nested dichotomies

- If there is no reason a priori to prefer any particular decomposition then use them all
 - Impractical for any non-trivial number of classes
- Consider a subset by taking a random sample of possible tree structures
 - Caching of models (since a given two class problem may occur in multiple trees)
 - Average probability estimates over the trees
 - Experiments show that this approach yields accurate multiclass classifiers
 - Can even improve the performance of methods that can already handle multiclass problems!

Calibrating class probabilities

- Class probability estimation is harder than classification
 - Classification error is minimized as long as the correct class is predicted with max probability
 - Estimates that yield correct classification may be quite poor with respect to quadratic or informational loss
- Often important to have accurate class probabilities
 - e.g. cost-sensitive prediction using the minimum expected cost method

Reliability diagram showing overoptimistic probability estimation for a two-class problem
Calibrating class probabilities

- Reliability diagram generated by collecting predicted probabilities and relative frequencies from a 10-fold cross-validation
 - Predicted probabilities discretized into 20 ranges via equal-frequency discretization
 - Correct bias by using post-hoc calibration to map observed curve to the diagonal
 - A rough approach can use the data from the reliability diagram directly
- Discretization-based calibration is fast...
 - But determining the appropriate number of discretization intervals is not easy

- View as a function estimation problem
 - One input – estimated class probability – and one output – the calibrated probability
- Assuming the function is piecewise constant and monotonically increasing
 - *Isotonic regression* minimizes the squared error between observed class “probabilities (0/1) and resulting calibrated class probabilities
 - Alternatively, use *logistic regression* to estimate the calibration function
 - Must use the log-odds of the estimated class probabilities as input
 - Multiclass logistic regression can be used for calibration in the multiclass case