Punktmenge \(P \subseteq \mathbb{N} \)

\[P = \{1, 2, 3, 4\} \]

Kantenmenge \(K \subseteq P \times P \)

symmetrisch, nicht-reflexiv

\[K = \{(1, 2), (2, 3), (3, 4), (4, 2)\} \]

\[K' = \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)\} \]

Graph \(G = (P, K) \)

ungerichtet: \(K \) symmetrisch. gerichtet: \(K \) nicht symmetrisch

Pfad: \((p_1, p_2, \ldots, p_n)\)

\((1, 2, 3, 4)\)

\((1, 2, 4)\)

Zyklus: \((p_1, p_2, \ldots, p_n, p_1)\)

\((2, 3, 4, 2)\)

DAG: Gerichteter, azyklischer Graph

(Directed Acyclic Graph)
Konsensum-Normalform

\[f(v_1, v_2, v_3) = \overline{v_1} \overline{v_2} v_3 + v_1 \overline{v_2} v_3 + \overline{v_1} v_2 v_3 \]

\[\rightarrow = \overline{v_1} v_2 v_3 \oplus \overline{v_1} \overline{v_2} \overline{v_3} \oplus v_1 v_2 v_3 \]

(max 1 Minterm kann den Wert 1 haben)

Komplementfreie RNF

\[f = \overline{v_1} \overline{v_2} \overline{v_3} = (v_1 \oplus 1)(v_2 \oplus 1)(v_3 \oplus 1) \]

\[= 1 \oplus 1 \oplus v_1 \oplus v_2 \oplus v_3 \oplus v_1 v_2 \oplus v_1 v_3 \oplus v_2 v_3 \oplus v_1 v_2 v_3 \]
Schaltnetze und ihre Optimierung

xor mittels NAND-Verknüpfung \(\overline{x \cdot y} \)

\[
x \oplus y = \overline{x \cdot y + x \cdot y} \\
= \overline{x \cdot y} + \overline{x \cdot y} = \overline{x \cdot y \cdot x \cdot y} \\
= (x + \overline{y}) \cdot \overline{x + \overline{y}} \\
= \overline{x \cdot y \cdot x \cdot y} \\
= \overline{x \cdot x \cdot y \cdot x \cdot y} \\
= \overline{x \cdot x \cdot y \cdot x \cdot y} \\
= \overline{4 \text{ Gatter}} \\
= \overline{5 \text{ Gatter}}
\]
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>c_{-1}</th>
<th>z</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
z &= x \oplus y \oplus c_{-1} \\
c &= x \cdot y + c_{-1}(x \oplus y)
\end{align*}
\]
Beispiel: Addition von 2 4-Bit-Zahlen

maximale Signallaufzeit für Addition von 2 n-Bit-Zahlen: \(n-1 \text{V}4 + 1 \text{H}4 \)

= \(3n-2 \) Gates
Vereinfachung von Schaltnetzen

- Resolution

\[(x_1 + x_1)(x_1 + \overline{x_2})(x_1 + x_2)(x_2 + \overline{x_2}) = x_1 \overline{x_2} + x_1 \overline{\overline{x_2}}\]

\[\Gamma x + \Gamma \overline{x} = \Gamma\]

Resolutionssatz der Schaltalgebra:

Zusammenfassen von zwei Teilmengen in der DVF, die sich in genau einer Variablen unterscheiden