IR User Interfaces and Visualization

Norbert Fuhr

March 22, 2006
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
[Shneiderman]: ‘Well designed, effective computer systems generate positive feelings of success, competence, mastery and clarity in the user community. When an interactive interface is well-designed, the interface almost disappears, enabling users to concentrate on their work, exploration, or pleasure.’
Design Principles

- Offer information feedback
e.g. *query formulation vs. documents retrieved*

- Permit easy reversal of actions
e.g. *keep track of choices during search*,
 provide browsable info relevant for current stage of search

- Reduce working memory load

- Provide alternative interfaces for novice and expert users
 (easy to learn v.s. powerful interfaces)
Visualization techniques

- icons
- color highlighting
- brushing and linking
 (connect two or more views of the same data)
- panning and zooming
- focus-plus-context
- magic lenses
 (transformations on the focussed data)
- tree views
- use of animation
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
The information access process

goals + tasks

1. start with an information need
2. select a system and a collection to search on
3. formulate a query
4. send the query to the system
5. receive the results in the form of information items
6. scan, evaluate and interpret the results
7. either stop, or
8. reformulate the query and go to step 4.
Standard model for the search process

1. Information Need
2. Query
3. Send to System
4. Receive Results
5. Evaluate Results
6. Done?
 - Yes: Stop
 - No: Reformulate
[Bates] **Berrypicking model:**

1. continuous shift of of information need and queries during search process
2. information need is not satisfied by a single set of documents instead: series of selections and bits of information acquired throughout the search

empirical studies:

- information seeking consists of a set of interconnected but diverse searches
- search results for a goal trigger new searches
- context of the problem is carried over
- main value of searching is accumulated learning and acquisition of information during the search
Erweitertes Modell für interaktives Retrieval

Dokumente → Repräsentation → Dokumente

Benutzer

Formale Anfrage → Interaktion → Resultat-Korb
Non-search parts of the information access process

80% fall into
- finding trends
- making comparisons
- aggregating information
- identifying a critical subset
- assessing
- interpreting

20%:
- cross-referencing
- summarizing
- finding evocative visualizations for reports
- miscellaneous
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Starting points
lists of collections

LEXIS-NEXIS source selection screen
Source and document type selection in Daffodil

<table>
<thead>
<tr>
<th>Filter</th>
<th>Data Sources</th>
<th>Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✔ Google</td>
<td>✔ Metadata</td>
</tr>
<tr>
<td></td>
<td>✔ BibDB</td>
<td>✔ PDF</td>
</tr>
<tr>
<td></td>
<td>✔ BibDBIS</td>
<td>✔ PS</td>
</tr>
<tr>
<td></td>
<td>✔ PLib</td>
<td>✔ DOC</td>
</tr>
<tr>
<td>✔ HCIBIB</td>
<td>✔ Achilles</td>
<td>✔ PPT</td>
</tr>
<tr>
<td></td>
<td>✔ ArXiv</td>
<td></td>
</tr>
<tr>
<td>✔ HCIBIB</td>
<td>✔ CiteSeerIS</td>
<td></td>
</tr>
<tr>
<td>✔ HCIBIB</td>
<td>✔ DBLP</td>
<td></td>
</tr>
<tr>
<td>✔ HCIBIB</td>
<td>✔ DBLPIS</td>
<td></td>
</tr>
<tr>
<td>✔ Springer</td>
<td>✔ CompuScience</td>
<td></td>
</tr>
<tr>
<td>✔ Springer</td>
<td>✔ GetInfo</td>
<td></td>
</tr>
</tbody>
</table>
Category or directory overviews based on classification system (e.g. Yahoo!)

MeSHBrowse interface
Cone tree

Figure 7. Cone Tree visualization of a directory hierarchy
Figure 5.
Horizontal Cone
Tree visualization
of a directory
hierarchy
HiBrowse: view category labels hierarchically and according to facets (disease, therapy, groups)
Automatically derived collection overviews

Scatter-Gather clustering retrieval results
Three-dimensional overview based on document clustering
Kohonen feature map (2D overview)
Kohonen feature map: SOMlib
Examples, dialogs and wizards

retrieval by reformulation start with example, iterative query reformulation

Interactive dialog mimic human search intermediary

Wizard step-by-step shortcut through sequence of menu choices

guided tour sequence of navigational choices through hypertext links
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Query specification

HCI styles:

- command language
- form filling
- menu selection
- direct manipulation
- natural language
Form filling

Database: Current Contents

Author Search: Current Contents database

Author: swanson, d. (e.g., jones, e d)

Options and Limits
- Another Author: and (e.g., wilson, r)
- Journal Title: and (e.g., daedalus or jama)
- Location: and UC Berkeley (all libraries)

Submit Search Back

Send questions, comments, or suggestions to melvyl@www.melvyl.ucop.edu
Melvyl© is a registered trademark of The Regents of the University of California
Form filling: syntax and spell check in Daffodil
Form filling: proposal of related terms in Daffodil
Graphical approaches to query specification
Simple filters

Magic lens interface for query specification (lenses act as filters)
Graphical approaches to query specification

Boolean queries

Block-oriented diagram visualization of Boolean queries
starting from natural language query,
direct manipulation of blocks
Filter-flow visualization of Boolean queries
VQuery Venn diagram visualization
WOB model: matrix for Boolean query formulation
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Context

Presenting retrieval results

a) Single result elements: Surrogates
b) Organization of result set
Document surrogates

- ordering criterion: RSV / attribute value (e.g. date)
- document entry:
 - title
 - metadata (date, source, length)
- document summary
 - query-independent
 - query-dependent
- clicking on document icon/title retrieves complete document
Query-dependent document summary

Information Retrieval

... *Information Retrieval*. Publikationen im Netz. *Information Retrieval* von C.J. van Rijsbergen (1979) Intelligente *Information Retrieval* Systeme von A ...

http://www.inf-wiss.uni-konsta ...
Treffer aus der Katalog-Rubrik > Veranstaltungen

Information Retrieval - Wikipedia

http://de.wikipedia.org/wiki/I ...

Information Retrieval

... *Information Retrieval*. 1995 this conference was merged into HIM ... Jürgen Krause, Christa Womser-Hacker (Eds.): *Information Retrieval* '93: Von der Modellierung zur Anwendung ...

http://www.informatik.uni-trie ...

Information Retrieval

http://www.is.informatik.uni-d ...
Example of ranked list of titles + surrogate info

AN IMPROVED TREATMENT OF EXTERNAL BOUNDARY FOR THREE-DIMENSIONAL FLOW COMPUTATIONS? Semenov V. Tsyknykov Veer N. Vatsa NASA Langley Research Center, Hampton, VA Abstract We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational

A Distributed Garbage Collection Algorithm Terence Critchlow UUCS-92-11 Department of Computer Science University of Utah Salt Lake City, UT 84112 USA July 30, 1992 Abstract Concurrent Scheme extends the Scheme programming language, providing parallel program execution on a distributed network. The
Query term hits within document content

- highlighting
- KWIC
 (keyword in context)
- TileBars
- SeeSoft
Highlighting

Sheffield July 29
27th Annual International ACM SIGIR Conference
Workshop on Peer-to-Peer Information Retrieval

SIGIR is the major international forum for the presentation of new research results and the demonstration of new systems and techniques in the broad field of information retrieval.

This SIGIR workshop on Peer-to-Peer Information Retrieval focus on new methods of resource representation, resource selection, and data fusion in peer-to-peer networks. The workshop particularly encourages papers that address heterogeneous peer-to-peer networks, as well as papers about methods that cope with partial and uncertain information. However, more broadly, papers are solicited on any topic related to information retrieval in peer-to-peer networks.

Highlighting in Google
KWIC: keyword in context

KWIC is an acronym for Keyword In Context, the most common format for concordance lines. In Context, the most common format for concordance lines. **Keyword In Context**, the most common format for concordance lines. **Encyclopedia**, The Free Encyclopedia, The Free Encyclopedia, The Free Encyclopedia, The Free Encyclopedia, The Free Encyclopedia.
Organization of result set

place document set in the context of other information types, in order to make it more understandable
relate document set to

- query terms
- Boolean query structure
- collection overviews
- descriptive metadata
- hyperlink structure
- document structure
- other documents
TileBars: Weight and location of query terms

User Query
(Enter words for different topics on different lines.)

osteoporosis
prevention
research

Run Search | New Query | Quit

Search Limit: ◆ 50 ◆ 100 ◆ 250 ◆ 500 ◆ 1000
Number of Clusters: ◆ 3 ◆ 4 ◆ 5 ◆ 8 ◆ 10

Mode: TileBars

Cluster Titles

FR88513–0157
AP: Groups Seek $1 Billion a Year for Aging Research
SJMN: WOMEN’S HEALTH LEGISLATION PROPOSED CR
AP: Older Athletes Run For Science
FR: Committee Meetings
FR: October Advisory Committees; Meetings
FR88120–0046
FR: Chronic Disease Burden and Prevention Models; Program FR
AP: Survey Says Experts Split on Diversion of Funds for AIDS
FR: Consolidated Delegations of Authority for Policy Development
SJMN: RESEARCH FOR BREAST CANCER IS STUCK IN P
VIBE: result documents in term space
InfoCrystal: Query term hits between documents
Eibl: Grafisches Design zur Trefferanzeige

Eingabefeld

Definition eines Suchkriteriums
Definition eines zweiten Suchkriteriums

Definition eines dritten Suchkriteriums
Probabilistisches Retrieval
Probabilistisches Retrieval mit manueller Umgewichtung
Eibl: Evaluierungsergebnisse

Precision:
- Visualisierung: 66
- Messenger: 61,6
- freeWAIS: 51,8

Recall:
- Visualisierung: 15,6
- Messenger: 12,7
- freeWAIS: 10,5
SuperBook: context via table of contents
Problems with SuperBook:

- Users wander off by following links
 - SB uses automatic linking to any other occurrence of the same word in the hypertext
 - more discriminating links required
- Users form better mental models when a hierarchical structure is given
Evaluation of Superbook:

- comparison with paper and standard online information access
- comparison based on set of tasks: browsing topics of interest, citation searching, searching for question answering, browsing for writing summary
- results:
 - SB users faster in searching tasks when search terms occur in text
 - SB not faster when terms occur neither in the document text nor in the tables of contents
Categories for results set context

DynaCat interface for viewing category labels that correspond to query types
Using hyperlinks to organize retrieval results
Cha-Cha: SuperBook on the Web

based on link structure of web site (shortest paths from root)
Mapuccio: graphical depiction of link structure (between retrieved pages)
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Tables Envision

Envision Query Window

- **Query History:**
 - Find Icon: New Query
 - Do Search

- **Query #2.1**
 - **Authors:** Card, Stuart K.
 - **Words in Title:** human-computer interaction
 - **Content Words:**

Envision Item Summary: Query #2.1

<table>
<thead>
<tr>
<th>Icon#</th>
<th>Useful</th>
<th>Est. Rel</th>
<th>Author/Editor</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Card, Stuart K.</td>
<td>1986</td>
<td>Understanding key constraints governing human-computer interfaces</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Card, Stuart K.</td>
<td>1983</td>
<td>The Psychology of Human-Computer Interaction</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Card, Stuart K.</td>
<td>1984</td>
<td>Human Limits and the VDT Computer Interface</td>
</tr>
</tbody>
</table>

Envision Graphic View: Query #2.1

- **Best 75 Items Found**
 - **Icon Label:** Relevance Rank
 - **Icon Color:** Est. Relevance
 - **Icon Size:** Uniform
 - **Icon Shape:** Item Type

<table>
<thead>
<tr>
<th>V-Axis:</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card, S. K.</td>
<td>37 68</td>
</tr>
<tr>
<td>Card, Stuart</td>
<td></td>
</tr>
<tr>
<td>Card, Stuart K.</td>
<td>2 63 5 6 1 7 11 12 22</td>
</tr>
<tr>
<td>Carroll, John M.</td>
<td></td>
</tr>
<tr>
<td>Entin, Eliseo E.</td>
<td>43</td>
</tr>
<tr>
<td>Fuchs, Henry</td>
<td></td>
</tr>
<tr>
<td>Hartson, H. R.</td>
<td>31</td>
</tr>
<tr>
<td>Henderson, D. Austin</td>
<td></td>
</tr>
</tbody>
</table>

- **X-Axis:** Pub. Year

Envision search results display. Copyright 1997 by Luis Terei, Novell.
TableLens visualization (for structured data)

<table>
<thead>
<tr>
<th>Year</th>
<th>Product</th>
<th>Quarter</th>
<th>Channel</th>
<th>Units</th>
<th>Revenue</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>ForeCode Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>ForeWord Pro</td>
<td>536</td>
<td>VAR</td>
<td>1</td>
<td>226</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>539</td>
<td>VAR</td>
<td>1</td>
<td>226</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>540</td>
<td>Retail</td>
<td>16</td>
<td>3200</td>
<td>961</td>
</tr>
<tr>
<td></td>
<td></td>
<td>541</td>
<td>Retail</td>
<td>12</td>
<td>2400</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>542</td>
<td>Retail</td>
<td>5</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>ForeMost Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ForeMost Lite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ForeMost Access</td>
<td>756</td>
<td>VAR</td>
<td>761</td>
<td>684900</td>
<td>267658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>757</td>
<td>VAR</td>
<td>475</td>
<td>427500</td>
<td>179550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>758</td>
<td>VAR</td>
<td>423</td>
<td>385200</td>
<td>161784</td>
</tr>
</tbody>
</table>

Row 0: Col: Profits Entry:
Perspective Wall
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Using relevance judgments

Example UI for relevance feedback

How to handle docs shown before? Users often reluctant to give RF—‘more like this’ in Web search engines
User control over relevance feedback:

- **Control**: No relevance feedback
- **Opaque**: Users give relevance judgments, see revised ranking
- **Transparent**: Users see how system reformulates the query, + revised rankings
- **Penetrable**: Users may modify the query reformulated by the system, then see resulting ranking

evaluation:
penetrable > opaque, transparent > control
Fetching relevant information in the background

- assistants / recommender agents
- learn (persistent) user profile based on relevance judgments when browsing Web pages, annotate links in new Web pages according to estimated relevance
- Letizia: recommendations for further actions (follow links)
- Butterfly: prefetching of potentially relevant information
Group relevance judgments

social recommendation approach:

1. find users with similar interests (relevance judgments)
2. recommend documents not seen yet, but judged positively by similar users
Gliederung

Human-Computer interaction

The information access process

Starting points

Query specification

Context

Tables

Using relevance judgments

Interface support for the search process
Interface support for the search process

Interfaces for string matching

Mozilla’s string matching interface
Example: string matching over a list (Netscape)
combination of search formulation and search results

- re-use same window: result may belong to former query
- new window: user has to reorganize windows
- stacked windows
Window management

divide functionality into different views (displayed simultaneously): monolithic (tiled windows) vs. flexible (Overlapping windows)

▶ overlapping windows: much user activity for moving between functionally related windows
▶ workspace: grouping of functionally related windows
▶ multiple virtual workspaces: 3D spatial metaphor, with virtual doors in between
▶ persistent sessions
Example diagrams of monolithic layouts
The DLITE interface
queries, sources, documents and groups of retrieved docs as objects

query formulation = creation of query object

submit query = move query object to collections

tool-tips

animation (e.g. for indicating illegal operations)
The Butterfly interface (browsing citations)
The SketchTrieve interface
Retaining search history

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Datenbank</th>
<th>Suchfrage</th>
<th>Treffer</th>
<th>Titelliste (Suchfragen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INSPECT</td>
<td>MULTIMEDIA AND RETRIEVAL</td>
<td>6935</td>
<td>Anzeige</td>
</tr>
<tr>
<td>2.</td>
<td>INSPECT</td>
<td>MULTIMEDIA SAME RETRIEVAL</td>
<td>5057</td>
<td>Anzeige</td>
</tr>
<tr>
<td>3.</td>
<td>INSPECT</td>
<td>USER SAME INTERFACE</td>
<td>23244</td>
<td>Anzeige</td>
</tr>
<tr>
<td>4.</td>
<td>INSPECT</td>
<td>2 AND 3</td>
<td>346</td>
<td>Anzeige</td>
</tr>
<tr>
<td>5.</td>
<td>INSPECT</td>
<td>"USER INTERFACE"</td>
<td>15363</td>
<td>Anzeige</td>
</tr>
<tr>
<td>6.</td>
<td>INSPECT</td>
<td>"MULTIMEDIA RETRIEVAL"</td>
<td>156</td>
<td>Anzeige</td>
</tr>
<tr>
<td>7.</td>
<td>INSPECT</td>
<td>5 AND 6</td>
<td>8</td>
<td>Anzeige</td>
</tr>
</tbody>
</table>

Search history in INSPEC
VISAGE interaction history visualization
Integrating Scanning, selection, and querying

Query history revision in the Melvyl bibliographic catalog
The Cat-a-Cone interface for integrating category and text scanning
Starting point: searching over category labels