IR Models based on Predicate Logic

Norbert Fuhr
The logical view on IR

- IR as Inference
- IR as uncertain inference
- Propositional vs. Predicate Logic
IR Models based on Predicate Logic
The logical view on IR
IR as Inference

The logical view on IR
IR as inference

q - query
d – document

retrieval:
search for documents which imply the query: $d \rightarrow q$

Example:

classical IR:
\[
d = \{t_1, t_2, t_3\}
\]
\[
q = \{t_1, t_3\}
\]

retrieval: $q \subset d$?

logical view:
\[
d = t_1 \land t_2 \land t_3
\]
\[
q = t_1 \land t_3
\]

retrieval: $d \rightarrow q$?
advantage of inference-based approach:
step from term-based to knowledge-based retrieval
e.g. easy incorporation of additional knowledge
example:
\(d: \) 'squares'
\(q: \) 'rectangles'
thesaurus: 'squares' \(\rightarrow \) 'rectangles'
\(\Rightarrow: \) \(d \rightarrow q \)
IR as uncertain inference

\[d: \text{'quadrangles'} \]
\[q: \text{'rectangles'} \]
\[\Rightarrow \text{uncertain knowledge required} \]
\[\text{'quadrangles'} \xrightarrow{0.3} \text{'rectangles'} \]

[Rijsbergen 86]:
IR as uncertain inference
Retrieval \(\hat{=} \)
estimate probability \(P(d \rightarrow q) = P(q|d) \)
Limitations of propositional logic:

conventional indexing (based on propositional logic): \(d = \{ \text{tree, house} \} \)

query: *Is there a picture with a tree on the left of the house?*

⇒ query cannot be expressed in propositional logic

predicate logic:

\(d: \text{tree}(t1). \text{house}(h1). \text{left}(h1,t1). \)

?- \text{tree}(X) & \text{house}(Y) & \text{left}(X,Y). \)
Relational Structures: Datalog

Datalog program: finite set of rules each expressing a conjunctive query

\[t(X_1, ..., X_k) : \neg r_1(U_{11}, \ldots, U_{1m_1}), \ldots, r_n(U_{n1}, \ldots, U_{nm_n}) \]

where each variable \(X_i \) occurs in the body of the rule (this way, every rule is safe). This corresponds to the logical formula

\[
\forall X_1 \ldots \forall X_k \forall U_{11} \ldots \forall U_{nm_n} \\
\quad t(X_1, ..., X_k) \land \neg r_1(U_{11}, \ldots, U_{1m_1}) \land \ldots \land \neg r_n(U_{n1}, \ldots, U_{nm_n})
\]

\(t(X_1, ..., x_k) \) is called the **head** and \(r_1(U_{11}, \ldots, U_{1m_1}), \ldots, r_n(U_{n1}, \ldots, U_{nm_n}) \) the **body**.

A formula without a head is also called a **fact**.
Datalog Properties

- horn predicate logic
- no functions
- restricted forms of negation allowed

\[t(X_1, \ldots, X_k) : \neg r_1(U_{11}, \ldots, U_{1m_1}), \ldots, \neg r_n(U_{n1}, \ldots, U_{nm_n}) \]

- rules may be recursive (head predicate may occur in the body)

\[r(X, Y) : \neg l(X, Z), r(Z, Y) \]

- sound and complete evaluation algorithms
IR Models based on Predicate Logic

The logical view on IR

Propositional vs. Predicate Logic

IR and Databases
The Logic View

Retrieval

- DB: given query q, find objects o with $o \rightarrow q$
- IR: given query q, find documents d with high values of $P(d \rightarrow q)$
- DB is a special case of IR!
 (in a certain sense)
IR and Databases
The Logic View

Retrieval

- DB: given query q, find objects o with $o \rightarrow q$
- IR: given query q, find documents d with high values of $P(d \rightarrow q)$
- DB is a special case of IR!
 (in a certain sense)

This section: Focusing on the logic view

- Inference
- Vague predicates
- Query language expressiveness
Inference

- IR with the Relational Model
- The Probabilistic Relational Model
- Interpretation of probabilistic weights
- Extensions
 - Disjoint events
 - Relational Bayes
 - Probabilistic rules
Relational Model
Projection

Projection: what is the collection about?

```
topic(T) :- index(D,T).
```
Selection: which documents are about IR?

aboutir(D) :- index(D,ir).
Relational Model

Join

<table>
<thead>
<tr>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ir</td>
</tr>
<tr>
<td>1</td>
<td>db</td>
</tr>
<tr>
<td>2</td>
<td>ir</td>
</tr>
<tr>
<td>3</td>
<td>db</td>
</tr>
<tr>
<td>3</td>
<td>oop</td>
</tr>
<tr>
<td>4</td>
<td>ir</td>
</tr>
<tr>
<td>4</td>
<td>ai</td>
</tr>
<tr>
<td>5</td>
<td>db</td>
</tr>
<tr>
<td>5</td>
<td>oop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOCNO</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>smith</td>
</tr>
<tr>
<td>2</td>
<td>miller</td>
</tr>
<tr>
<td>3</td>
<td>johnson</td>
</tr>
<tr>
<td>4</td>
<td>firefly</td>
</tr>
<tr>
<td>5</td>
<td>bates</td>
</tr>
</tbody>
</table>

Join: who writes about IR?

irauthor(A) :- index(D,ir) & author(D,A).
Relational Model

Union

<table>
<thead>
<tr>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ir</td>
</tr>
<tr>
<td>1</td>
<td>db</td>
</tr>
<tr>
<td>2</td>
<td>ir</td>
</tr>
<tr>
<td>3</td>
<td>db</td>
</tr>
<tr>
<td>3</td>
<td>oop</td>
</tr>
<tr>
<td>4</td>
<td>ir</td>
</tr>
<tr>
<td>4</td>
<td>ai</td>
</tr>
<tr>
<td>5</td>
<td>db</td>
</tr>
<tr>
<td>5</td>
<td>oop</td>
</tr>
</tbody>
</table>

Union: which documents are about IR or DB?

\[
\text{irordb}(D) \leftarrow \text{index}(D, \text{ir}).
\]

\[
\text{irordb}(D) \leftarrow \text{index}(D, \text{db}).
\]
IR Models based on Predicate Logic

Inference

IR with the Relational Model

Relational Model

Difference

<table>
<thead>
<tr>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ir</td>
</tr>
<tr>
<td>1</td>
<td>db</td>
</tr>
<tr>
<td>2</td>
<td>ir</td>
</tr>
<tr>
<td>3</td>
<td>db</td>
</tr>
<tr>
<td>3</td>
<td>oop</td>
</tr>
<tr>
<td>4</td>
<td>ir</td>
</tr>
<tr>
<td>4</td>
<td>ai</td>
</tr>
<tr>
<td>5</td>
<td>db</td>
</tr>
<tr>
<td>5</td>
<td>oop</td>
</tr>
</tbody>
</table>

Difference: which documents are about IR, but not DB?

\[\text{irnotdb}(D) :- \text{index}(D,\text{ir}) \& \text{not(index}(D,\text{db})). \]
The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

<table>
<thead>
<tr>
<th>β</th>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>IR</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>DB</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>IR</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>DB</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>OOP</td>
</tr>
<tr>
<td>0.9</td>
<td>4</td>
<td>IR</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>AI</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
<td>DB</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>OOP</td>
</tr>
</tbody>
</table>
The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

<table>
<thead>
<tr>
<th>β</th>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>IR</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>DB</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>IR</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>DB</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>OOP</td>
</tr>
<tr>
<td>0.9</td>
<td>4</td>
<td>IR</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>AI</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
<td>DB</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>OOP</td>
</tr>
</tbody>
</table>

Which documents are about DB?

$\text{aboutdb}(D) :- \text{index}(D, db)$.

Inference

IR Models based on Predicate Logic
IR Models based on Predicate Logic
Inference
The Probabilistic Relational Model

The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

index

<table>
<thead>
<tr>
<th>β</th>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>IR</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>DB</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>IR</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>DB</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>OOP</td>
</tr>
<tr>
<td>0.9</td>
<td>4</td>
<td>IR</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>AI</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
<td>DB</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>OOP</td>
</tr>
</tbody>
</table>

Which documents are about DB?
aboutdb(D) :- index(D,db).
The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>DOCNO</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>IR</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>DB</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>IR</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>DB</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>OOP</td>
</tr>
<tr>
<td>0.9</td>
<td>4</td>
<td>IR</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>AI</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
<td>DB</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>OOP</td>
</tr>
</tbody>
</table>

Which documents are about DB?
\[
\text{aboutdb}(D) \leftarrow \text{index}(D, \text{db}).
\]

Which documents are about IR and DB?
\[
\text{aboutirdb}(D) \leftarrow \text{index}(D, \text{ir}) \land \text{index}(D, \text{db}).
\]
Extensional vs. Intensional Semantics

<table>
<thead>
<tr>
<th>β</th>
<th>DOC</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>d1</td>
<td>ir</td>
</tr>
<tr>
<td>0.5</td>
<td>d1</td>
<td>db</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>d2</td>
<td>d1</td>
</tr>
</tbody>
</table>

\begin{align*}
\text{about}(D,T) & : - \text{docTerm}(D,T). \\
\text{q}(D) & : - \text{about}(D,\text{ir}) \& \text{about}(D,\text{db}).
\end{align*}
Extensional vs. intensional semantics

docterm

\[\begin{array}{|c|c|c|} \hline \beta & \text{DOC} & \text{TERM} \\ \hline 0.9 & d1 & ir \\ 0.5 & d1 & db \\ \hline \end{array} \]

link

\[\begin{array}{|c|c|c|} \hline \beta & S & T \\ \hline 0.7 & d2 & d1 \\ \hline \end{array} \]

about(D,T) :- docTerm(D,T).

about(D,T) :- link(D,D1) & about(D1,T)

q(D) :- about(D,ir) & about(D,db).

Extensional semantics:

weight of derived fact as function of weights of subgoals

\[P(q(d2)) = P(about(d2,ir)) \cdot P(about(d2,db)) = (0.7 \cdot 0.9) \cdot (0.7 \cdot 0.5) \]
IR Models based on Predicate Logic

Inference

The Probabilistic Relational Model

Extensional vs. intensional semantics

<table>
<thead>
<tr>
<th>docterm</th>
<th>(\beta)</th>
<th>DOC</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>d1</td>
<td>ir</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>d1</td>
<td>db</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>link</th>
<th>(\beta)</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

about(D,T) :- docTerm(D,T).

about(D,T) :- link(D,D1) & about(D1,T)

q(D) :- about(D,ir) & about(D,db).

Extensional semantics:

weight of derived fact as function of weights of subgoals

\[
P(q(d2)) = P(\text{about}(d2,\text{ir})) \cdot P(\text{about}(d2,\text{db})) = (0.7 \cdot 0.9) \cdot (0.7 \cdot 0.5)
\]

Problem

“improper treatment of correlated sources of evidence” [Pearl 88]

\(\rightarrow \) extensional semantics only correct for tree-shaped inference structures
Intensional semantics

weight of derived fact as function of weights of underlying ground facts
Intensional semantics

weight of derived fact as function of weights of underlying ground facts

Method: Event keys and event expressions

docterm

<table>
<thead>
<tr>
<th>β</th>
<th>κ</th>
<th>DOC</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>dT(d1,ir)</td>
<td>d1</td>
<td>ir</td>
</tr>
<tr>
<td>0.5</td>
<td>dT(d1,db)</td>
<td>d1</td>
<td>db</td>
</tr>
</tbody>
</table>

link

<table>
<thead>
<tr>
<th>β</th>
<th>κ</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>l(d2,d1)</td>
<td>d2</td>
<td>d1</td>
</tr>
</tbody>
</table>
Intensional semantics

weight of derived fact as function of weights of underlying ground facts

Method: Event keys and event expressions

docterm

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\kappa)</th>
<th>DOC</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>(dT(d1,ir))</td>
<td>(d1)</td>
<td>(ir)</td>
</tr>
<tr>
<td>0.5</td>
<td>(dT(d1,db))</td>
<td>(d1)</td>
<td>(db)</td>
</tr>
</tbody>
</table>

\[\text {?- docTerm(D,ir) & docTerm(D,db).} \]

gives

\[\text{d1 [dT(d1,ir) & dT(d1,db)]} \]
Intensional semantics

weight of derived fact as function of weights of underlying ground facts

Method: Event keys and event expressions

docterms

<table>
<thead>
<tr>
<th>β</th>
<th>κ</th>
<th>DOC</th>
<th>TERM</th>
<th>link</th>
<th>β</th>
<th>κ</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>dT(d1,ir)</td>
<td>d1</td>
<td>ir</td>
<td>0.7</td>
<td>l(d2,d1)</td>
<td>d2</td>
<td>d1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>dT(d1,db)</td>
<td>d1</td>
<td>db</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

?- docTerm(D,ir) & docTerm(D,db).

gives

d1 [dT(d1,ir) & dT(d1,db)]

$0.9 \cdot 0.5 = 0.45$
Event keys and event expressions

docterm

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\kappa)</th>
<th>DOC</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>dT(d1,ir)</td>
<td>d1</td>
<td>ir</td>
</tr>
<tr>
<td>0.5</td>
<td>dT(d1,db)</td>
<td>d1</td>
<td>db</td>
</tr>
</tbody>
</table>

link

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\kappa)</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>l(d2,d1)</td>
<td>d2</td>
<td>d1</td>
</tr>
</tbody>
</table>

about(D,T) :- docTerm(D,T).
about(D,T) :- link(D,D1) \& about(D1,T)
?- about(D,ir) \& about(D,db).

gives

d1 \[dT(d1,ir) \& dT(d1,db)\] 0.9 \cdot 0.5 = 0.45
d2 \[l(d2,d1) \& dT(d1,ir) \& l(d2,d1) \& dT(d1,db)\] 0.7 \cdot 0.9 \cdot 0.5 = 0.315
Recursion

\[\text{about}(D,T) := \text{docTerm}(D,T). \]
\[\text{about}(D,T) := \text{link}(D,D1) \land \text{about}(D1,T). \]

?- \text{about}(D,ir)
\begin{align*}
d1 & \quad \left[\text{dT}(d1,ir) \mid \text{l}(d1,d2) \land \text{l}(d2,d3) \land \text{l}(d3,d1) \land \right. \\
& \left. \quad \text{dT}(d1,ir) \mid \ldots \right] \\
& \quad 0.900 \\
d3 & \quad \left[\text{l}(d3,d1) \land \text{dT}(d1,ir) \right] \\
& \quad 0.720 \\
d2 & \quad \left[\text{l}(d2,d3) \land \text{l}(d3,d1) \land \text{dT}(d1,ir) \right] \\
& \quad 0.288
\end{align*}

?- \text{about}(D,ir) \land \text{about}(D,db)
\begin{align*}
d1 & \quad \left[\text{dT}(d1,ir) \land \text{dT}(d1,db) \right] \\
& \quad 0.450 \\
d3 & \quad \left[\text{l}(d3,d1) \land \text{dT}(d1,ir) \land \text{l}(d3,d1) \land \text{dT}(d1,db) \right] \\
& \quad 0.360
Computation of probabilities for event expressions

1. Transformation of expression into disjunctive normal form
2. Application of sieve formula:
 - Simple case of 2 conjuncts: $P(a \lor b) = P(a) + P(b) - P(a \land b)$
Computation of probabilities for event expressions

1. transformation of expression into disjunctive normal form

2. application of sieve formula:
 - simple case of 2 conjuncts: \(P(a \lor b) = P(a) + P(b) - P(a \land b) \)
 - general case:
 \(c_i \) – conjunct of event keys

\[
P(c_1 \lor \ldots \lor c_n) = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \leq j_1 < \ldots < j_i \leq n} P(c_{j_1} \land \ldots \land c_{j_i}).
\]

- \(\Rightarrow \) exponential complexity
Computation of probabilities for event expressions

1. transformation of expression into disjunctive normal form
2. application of sieve formula:
 - simple case of 2 conjuncts: \(P(a \lor b) = P(a) + P(b) - P(a \land b) \)
 - general case:
 \(c_i \) – conjunct of event keys

\[
P(c_1 \lor \ldots \lor c_n) = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \leq j_1 < \ldots < j_i \leq n} P(c_{j_1} \land \ldots \land c_{j_i}).
\]

- \(\Rightarrow \) exponential complexity
- \(\Rightarrow \) use only when necessary for correctness
Computation of probabilities for event expressions

1. transformation of expression into disjunctive normal form
2. application of sieve formula:
 - simple case of 2 conjuncts: $P(a \lor b) = P(a) + P(b) - P(a \land b)$
 - general case:
 c_i – conjunct of event keys
 \[
P(c_1 \lor \ldots \lor c_n) = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \leq j_1 < \ldots < j_i \leq n} P(c_{j_1} \land \ldots \land c_{j_i}).
\]

- \leadsto exponential complexity
- \leadsto use only when necessary for correctness

see [Dalvi & Suciu 07]
Possible worlds semantics

$$0.9 \ \text{docTerm}(d1, \text{ir}).$$

$$P(W_1) = 0.9: \ \{\text{docTerm}(d1, \text{ir})\}$$

$$P(W_2) = 0.1: \ \{}$$
0.6 \text{docTerm}(d1,ir). 0.5 \text{docTerm}(d1,db).

Possible interpretations:

\begin{itemize}
 \item \(l_1\):
 \begin{align*}
 P(W_1) &= 0.3: \{\text{docTerm}(d1,ir)\} \\
 P(W_2) &= 0.3: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
 P(W_3) &= 0.2: \{\text{docTerm}(d1,db)\} \\
 P(W_4) &= 0.2: \{\}
 \end{align*}
 \item \(l_2\):
 \begin{align*}
 P(W_1) &= 0.5: \{\text{docTerm}(d1,ir)\} \\
 P(W_2) &= 0.1: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
 P(W_3) &= 0.4: \{\text{docTerm}(d1,db)\}
 \end{align*}
 \item \(l_3\):
 \begin{align*}
 P(W_1) &= 0.1: \{\text{docTerm}(d1,ir)\} \\
 P(W_2) &= 0.5: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
 P(W_3) &= 0.4: \{\}
 \end{align*}
\end{itemize}
0.6 \text{docTerm}(d1,\text{ir}). 0.5 \text{docTerm}(d1,\text{db}).

Possible interpretations:

\begin{align*}
I_1: & \quad P(W_1) = 0.3: \{\text{docTerm}(d1,\text{ir})\} \\
& \quad P(W_2) = 0.3: \{\text{docTerm}(d1,\text{ir}), \text{docTerm}(d1,\text{db})\} \\
& \quad P(W_3) = 0.2: \{\text{docTerm}(d1,\text{db})\} \\
& \quad P(W_4) = 0.2: \{\} \\
I_2: & \quad P(W_1) = 0.5: \{\text{docTerm}(d1,\text{ir})\} \\
& \quad P(W_2) = 0.1: \{\text{docTerm}(d1,\text{ir}), \text{docTerm}(d1,\text{db})\} \\
& \quad P(W_3) = 0.4: \{\text{docTerm}(d1,\text{db})\} \\
I_3: & \quad P(W_1) = 0.1: \{\text{docTerm}(d1,\text{ir})\} \\
& \quad P(W_2) = 0.5: \{\text{docTerm}(d1,\text{ir}), \text{docTerm}(d1,\text{db})\} \\
& \quad P(W_3) = 0.4: \{\} \\
\end{align*}

probabilistic logic:

\[0.1 \leq P(\text{docTerm}(d1, \text{ir}) \& \text{docTerm}(d1, \text{db})) \leq 0.5\]
IR Models based on Predicate Logic

Inference

Interpretation of probabilistic weights

0.6 \text{docTerm}(d1,ir). 0.5 \text{docTerm}(d1,db).

Possible interpretations:

\begin{align*}
I_1: & \quad P(W_1) = 0.3: \{\text{docTerm}(d1,ir)\} \\
\quad & \quad P(W_2) = 0.3: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
\quad & \quad P(W_3) = 0.2: \{\text{docTerm}(d1,db)\} \\
\quad & \quad P(W_4) = 0.2: \{\} \\
I_2: & \quad P(W_1) = 0.5: \{\text{docTerm}(d1,ir)\} \\
\quad & \quad P(W_2) = 0.1: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
\quad & \quad P(W_3) = 0.4: \{\text{docTerm}(d1,db)\} \\
I_3: & \quad P(W_1) = 0.1: \{\text{docTerm}(d1,ir)\} \\
\quad & \quad P(W_2) = 0.5: \{\text{docTerm}(d1,ir), \text{docTerm}(d1,db)\} \\
\quad & \quad P(W_3) = 0.4: \{\} \\
\end{align*}

probabilistic logic:

\begin{align*}
0.1 & \leq P(\text{docTerm}(d1,ir) \& \text{docTerm}(d1,db)) \leq 0.5 \\
\text{probabilistic Datalog with independence assumptions:} \\
& P(\text{docTerm}(d1,ir) \& \text{docTerm}(d1,db)) = 0.3
\end{align*}
Disjoint events

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>Paris</td>
<td>France</td>
</tr>
<tr>
<td>0.2</td>
<td>Paris</td>
<td>Texas</td>
</tr>
<tr>
<td>0.1</td>
<td>Paris</td>
<td>Idaho</td>
</tr>
</tbody>
</table>
Disjoint events

<table>
<thead>
<tr>
<th>β</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>Paris</td>
<td>France</td>
</tr>
<tr>
<td>0.2</td>
<td>Paris</td>
<td>Texas</td>
</tr>
<tr>
<td>0.1</td>
<td>Paris</td>
<td>Idaho</td>
</tr>
</tbody>
</table>

Interpretation:

\[P(W_1) = 0.7: \{ \text{cityState(paris, france)} \} \]
\[P(W_2) = 0.2: \{ \text{cityState(paris, texas)} \} \]
\[P(W_3) = 0.1: \{ \text{cityState(paris, idaho)} \} \]
IR Models based on Predicate Logic
Inference
Extensions

Relational Bayes

[Roelleke et al. 07]

Role of the relational Bayes: Generation of a probabilistic database

Non-probabilistic database Bayes Probabilistic database
P(Nationality | City):
#
nationality_city SUM(Nat, City) :-
#
nationality_and_city (Nat, City) | (City);
Relational Bayes

Example: \(P(t|d) \)

<table>
<thead>
<tr>
<th>term</th>
<th>DocId</th>
</tr>
</thead>
<tbody>
<tr>
<td>sailing</td>
<td>doc1</td>
</tr>
<tr>
<td>boats</td>
<td>doc1</td>
</tr>
<tr>
<td>sailing</td>
<td>doc2</td>
</tr>
<tr>
<td>boats</td>
<td>doc2</td>
</tr>
<tr>
<td>sailing</td>
<td>doc2</td>
</tr>
<tr>
<td>east</td>
<td>doc3</td>
</tr>
<tr>
<td>coast</td>
<td>doc3</td>
</tr>
<tr>
<td>sailing</td>
<td>doc3</td>
</tr>
<tr>
<td>sailing</td>
<td>doc4</td>
</tr>
<tr>
<td>boats</td>
<td>doc4</td>
</tr>
<tr>
<td>sailing</td>
<td>doc5</td>
</tr>
</tbody>
</table>

\[
p_{t,d} \text{ space}(\text{Term, DocId}) :-
\begin{align*}
term(\text{Term, DocId}) & | \text{(DocId)}; \\
P(t|d) & | \text{Term} & \text{DocId} \\
0.50 & sailing & doc1 \\
0.50 & boats & doc1 \\
0.33 & sailing & doc2 \\
0.33 & boats & doc2 \\
0.33 & sailing & doc2 \\
0.33 & east & doc3 \\
0.33 & coast & doc3 \\
0.33 & sailing & doc3 \\
1.00 & sailing & doc4 \\
1.00 & boats & doc5
\end{align*}
\]

\[
p_{t,d} \text{ SUM}(\text{Term, DocId}) :-
\begin{align*}
term(\text{Term, DocId}) & | \text{(DocId)}; \\
P(t|d) & | \text{Term} & \text{DocId} \\
0.50 & sailing & doc1 \\
0.50 & boats & doc1 \\
0.67 & sailing & doc2 \\
0.33 & boats & doc2 \\
0.33 & east & doc3 \\
0.33 & coast & doc3 \\
0.33 & sailing & doc3 \\
1.00 & sailing & doc4 \\
1.00 & boats & doc5
\end{align*}
\]
Probabilistic rules
Rules for deterministic facts:

0.7 likes-sports(X) :- man(X).
0.4 likes-sports(X) :- woman(X).
man(peter).
Proabilistic rules
Rules for deterministic facts:

0.7 likes-sports(X) :- man(X).
0.4 likes-sports(X) :- woman(X).
man(peter).

Interpretation:

\[P(W_1) = 0.7: \{ \text{man(peter)}, \text{likes-sports(peter)} \} \]
\[P(W_2) = 0.3: \{ \text{man(peter)} \} \]
Probabilistic rules
Rules for uncertain facts:

gender is disjoint on the first attribute
0.7 l-sports(X) :- gender(X,male).
0.4 l-sports(X) :- gender(X,female).
0.5 gender(X,male) :- human(X).
0.5 gender(X,female) :- human(X).
human(jo).
Probabilistic rules
Rules for uncertain facts:

gender is disjoint on the first attribute
0.7 \text{l-sports}(X) :- \text{gender}(X,\text{male}).
0.4 \text{l-sports}(X) :- \text{gender}(X,\text{female}).
0.5 \text{gender}(X,\text{male}) :- \text{human}(X).
0.5 \text{gender}(X,\text{female}) :- \text{human}(X).
\text{human}(jo).

Interpretation:
\(P(W_1) = 0.35: \{\text{gender}(jo,\text{male}), \text{l-sports}(jo)\} \)
\(P(W_2) = 0.15: \{\text{gender}(jo,\text{male})\} \)
\(P(W_3) = 0.20: \{\text{gender}(jo,\text{female}), \text{l-sports}(jo)\} \)
\(P(W_4) = 0.30: \{\text{gender}(jo,\text{female})\} \)

?- \text{l-sports}(jo)
Probabilistic rules
Rules for uncertain facts:

gender is disjoint on the first attribute
0.7 \text{l-sports}(X) :- \text{gender}(X,\text{male}).
0.4 \text{l-sports}(X) :- \text{gender}(X,\text{female}).
0.5 \text{gender}(X,\text{male}) :- \text{human}(X).
0.5 \text{gender}(X,\text{female}) :- \text{human}(X).
\text{human}(\text{jo}).

Interpretation:
\begin{align*}
P(W_1) &= 0.35: \{\text{gender}(\text{jo},\text{male}), \ \text{l-sports}(\text{jo})\} \\
P(W_2) &= 0.15: \{\text{gender}(\text{jo},\text{male})\} \\
P(W_3) &= 0.20: \{\text{gender}(\text{jo},\text{female}), \ \text{l-sports}(\text{jo})\} \\
P(W_4) &= 0.30: \{\text{gender}(\text{jo},\text{female})\} \\
\end{align*}

?- \text{l-sports}(\text{jo}) \quad P(W_1) + P(W_3) = 0.55
Probabilistic rules
Rules for independent events

\[\text{sameauthor(D1,D2)} \leftarrow \text{author(D1,X) } \& \text{author(D2,X)}. \]

\[0.5 \text{ link(D1,D2)} \leftarrow \text{refer(D1,D2)}. \]

\[0.2 \text{ link(D1,D2)} \leftarrow \text{sameauthor(D1,D2)}. \]

\[?? \text{ link(D1,D2)} \leftarrow \text{refer(D1,D2) } \& \text{sameauthor(D1,D2)}. \]

\[P(l|r), P(l|s) \rightarrow P(l|r \wedge s)? \]
Rules for independent events
Modeling probabilistic inference networks

0.7 \text{link}(D1,D2) :- \text{refer}(D1,D2) \land \text{sameauthor}(D1,D2).
0.5 \text{link}(D1,D2) :- \text{refer}(D1,D2) \land \neg \text{sameauthor}(D1,D2).
0.2 \text{link}(D1,D2) :- \text{sameauthor}(D1,D2) \land \neg \text{refer}(D1,D2).

Probabilistic inference networks,
rules define link matrix
Vague Predicates

- The Logical View on Vague Predicates
- Vague Predicates in IR and Databases
- Probabilistic Modeling of Vague Predicates
IR Models based on Predicate Logic

Vague Predicates

Motivating Example

"lcd tv 46inch"

Showing 1 - 16 of 3,851 Results

Samsung LN46E550 46-Inch 1080p 60Hz LCD HDTV by Samsung

$879.99 Click for product details
Order in the next 5 hours and get it by Wednesday, Jan 16.
More Buying Choices
$463.80 used & new (14 offers)

Samsung LN46D550 46-Inch 1080p 60Hz LCD HDTV (Black) by Samsung

$899.99 $599.27
Only 15 left in stock - order soon.
More Buying Choices
$599.27 new (4 offers)
$490.00 used (10 offers)

Cheetah Mounts APTMM2B Flush Tilt Dual Hook (1.3" from wall) Flat Screen Cheetah

$49.99 $27.99
Order in the next 7 hours and get it by Wednesday, Jan 16.
More Buying Choices
$27.99 new (9 offers)
IR Models based on Predicate Logic

Vague Predicates

Motivating Example

"lcd tv 45inch"

Showing 1 - 16 of 2,617 Results

RCA 32LB45RQ 32-Inch Full 1080p 60Hz LCD HDTV by RCA
$228.38 used (4 offers)

RCA 42LB45RQ 42-Inch 1080p 60Hz LCD HDTV (Black) by RCA
$476.99
Only 1 left in stock - order soon.

RCA 22LB45RQD 22-Inch Full 1080p LCD/DVD Combo HDTV by RCA
$299.99 $219.99
Only 1 left in stock - order soon.

More Buying Choices

$219.99 new (2 offers)
$333.67 used (3 offers)

5 stars (138)
Electronics: See all 1,914 items

$476.99 new (2 offers)
$333.67 used (3 offers)

5 stars (138)
Electronics: See all 1,914 items

$299.99 $219.99
Only 1 left in stock - order soon.

More Buying Choices

$188.99 new (3 offers)
$125.00 used (19 offers)

5 stars (80)
Electronics: See all 1,914 items
Propositional vs. Predicate Logic

- Current IR systems are based on proposition logic (query term present/absent in document)
Propositional vs. Predicate Logic

- Current IR systems are based on proposition logic (query term present/absent in document)
- Similarity of values not considered
Propositional vs. Predicate Logic

- Current IR systems are based on proposition logic (query term present/absent in document)
- Similarity of values not considered
- but multimedia IR deals with similarity already
Propositional vs. Predicate Logic

- Current IR systems are based on proposition logic (query term present/absent in document)
- Similarity of values not considered
- but multimedia IR deals with similarity already
Propositional vs. Predicate Logic

- Current IR systems are based on proposition logic (query term present/absent in document)
- Similarity of values not considered
- but multimedia IR deals with similarity already
- transition from propositional to predicate logic necessary
[Fuhr & Roelleke 97] [Fuhr 00]

- Example: Shopping 45 inch LCD TV
- Vague predicates as built-in predicates: $X \approx Y$
- \[
\begin{array}{c|c|c}
\beta & X & Y \\
\hline
0.7 & 42 & 45 \\
0.8 & 43 & 45 \\
0.9 & 44 & 45 \\
1.0 & 45 & 45 \\
0.9 & 46 & 45 \\
0.8 & 47 & 45 \\
\cdots & \cdots & \cdots \\
\end{array}
\]

query(D):- Category(D,tv) & type(D,lcd) & size(D,X) & $\approx(X,45)$
Data types and vague predicates in IR

Data type: domain + (vague) predicates

- Language (multilingual documents) / (language-specific stemming)
- Person names / “his name sounds like Jones”
- Dates / “about a month ago”
- Amounts / “orders exceeding 1 Mio $”
- Technical measurements / “at room temperature”
- Chemical formulas
"I am looking for a 45-inch LCD TV with
- wide viewing angle
- high contrast
- low price
- high user rating"

→ vague criteria are very frequent in end-user querying of fact databases
→ but no appropriate support in SQL
Vague Criteria in Fact Databases

"I am looking for a 45-inch LCD TV with
- wide viewing angle
- high contrast
- low price
- high user rating"

→ vague criteria are very frequent in end-user querying of fact databases
→ but no appropriate support in SQL

vague conditions → similar to fuzzy predicates
Probabilistic Modeling of Vague Predicates

[Fuhr 90]

- learn vague predicates from feedback data
- construct feature vector $\vec{x}(q_i, d_i)$ from query value q_i and document value d_i (e.g. relative difference)
- apply logistic regression
Expressiveness

- Retrieval Rules, Joins, Aggregations and Restructuring
- Expressiveness in XML Retrieval
Expressiveness
Formulating Retrieval Rules

about(D,T) :- docTerm(D,T).
Expressiveness
Formulating Retrieval Rules

about(D,T) :- docTerm(D,T).

consider document linking / anchor text
about(D,T) :- link(D1,D), about(D1,T).
Expressiveness

Formulating Retrieval Rules

\[
\text{about}(D,T) :- \text{docTerm}(D,T).
\]

Consider document linking / anchor text
\[
\text{about}(D,T) :- \text{link}(D_1,D), \text{about}(D_1,T).
\]

Consider term hierarchy
\[
\text{about}(D,T) :- \text{subconcept}(T,T_1) \land \text{about}(D,T_1).
\]
Expressiveness

Formulating Retrieval Rules

about(D,T) :- docTerm(D,T).

consider document linking / anchor text
about(D,T) :- link(D1,D), about(D1,T).

consider term hierarchy
about(D,T) :- subconcept(T,T1) & about(D,T1).

field-specific term weighting
0.9 docTerm(D,T) :- occurs(D,T,title).
0.5 docTerm(D,T) :- occurs(D,T,body).
IR authors:

irauthor(N):= about(D,ir) & author(D,N).
IR Models based on Predicate Logic
Expressiveness
Retrieval Rules, Joins, Aggregations and Restructuring

Expressiveness
Joins

IR authors:

\texttt{irauthor(N):- about(D,ir) \& author(D,N).}

Smith’s IR papers cited by Miller

\texttt{?- author(D,smith) \& about(D,ir) \& author(D1,miller) \& cites(D,D1).}
Who are the major IR authors?

<table>
<thead>
<tr>
<th>index</th>
<th>DNO</th>
<th>TERM</th>
<th>author</th>
<th>irauthor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1</td>
<td>ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>3</td>
<td>ai</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DNO</td>
<td>NAME</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>smith</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td>miller</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>smith</td>
</tr>
</tbody>
</table>

irauthor(A):= index(D,ir) & author(D,A).
Expressiveness

Aggregation (1)

Who are the major IR authors?

<table>
<thead>
<tr>
<th>β</th>
<th>DNO</th>
<th>TERM</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1</td>
<td>ir</td>
<td>0.9</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>db</td>
<td>0.8</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>ir</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>ir</td>
<td>0.8</td>
</tr>
<tr>
<td>0.7</td>
<td>3</td>
<td>ai</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNO</th>
<th>NAME</th>
<th>author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>smith</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>miller</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>smith</td>
<td>0.7</td>
</tr>
</tbody>
</table>

\[
\text{iraauthor}(A) : \neg \text{index}(D, \text{ir}) \land \text{author}(D, A).
\]

Aggregation through projection!
Who are the major IR authors?

<table>
<thead>
<tr>
<th>β</th>
<th>DNO</th>
<th>TERM</th>
<th>author</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1</td>
<td>ir</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>db</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>ir</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>ir</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>3</td>
<td>ai</td>
<td></td>
</tr>
</tbody>
</table>

Aggregation through summing:

$\text{irauth}(D,A):= \text{index}(D,ir) \land \text{author}(D,A)$.

$\text{irauths} \text{ SUM}(\text{Name}) := \text{irdbauth}(\text{Doc,Name}) \lor (\text{Name})$
Expressiveness in XML Retrieval

[Fuhr & Lalmas 07]

Content Typing

Object Types

Data Types

Text only

Structure

Nested structure

Named fields

XPath

XQuery
Expressiveness in XML Retrieval

[Fuhr & Lalmas 07]

Content Typing

Object Types

Data Types

Text only

Structure

Nested structure
Named fields
XPath
XQuery
XML structure: 1. Nested Structure

- XML document as hierarchical structure
- Retrieval of elements (subtrees)
- Typical query language does not allow for specification of structural constraints
- Relevance-oriented selection of answer elements: return the most specific relevant elements
XML structure: 2. Named Fields

- Reference to elements through field names only
- Context of elements is ignored (e.g. author of article vs. author of referenced paper)
- Post-Coordination may lead to false hits (e.g. author name – author affiliation)

Example: Dublin Core

```xml
  <dc:title>Generic Algebras ...
  </dc:title>
  <dc:creator>A. Smith (ESI), B. Miller (CMU)</dc:creator>
  <dc:subject>Orthogonal group, Symplectic group</dc:subject>
  <dc:date>2001-02-27</dc:date>
  <dc:format>application/postscript</dc:format>
  <dc:source>ESI preprints</dc:source>
  <dc:language>en</dc:language>
</oai_dc:dc>
```
XML structure: 3. XPath

/document/chapter[about(./heading, XML) AND about(./section///*[syntax])]

- document
 - chapter
 - heading: Introduction
 - This...
 - section
 - heading: XML Query Language XQL
 - heading: Examples
 - section
 - heading: Syntax
 - We describe syntax of XQL
XML structure: 3. XPath

/\document/chapter[about(./heading, XML) AND about(./section///*,syntax)]
XML structure: 3. XPath (cont’d)

- Full expressiveness for navigation through document tree (+links)
 - Parent/child, ancestor/descendant
 - Following/preceding, following-sibling, preceding-sibling
 - Attribute, namespace

- Selection of arbitrary elements/subtrees
 (but answer can be only a single element of the originating document)
Higher expressiveness, especially for database-like applications:

- Joins (trees \rightarrow graphs)
- Aggregations
- Constructors for restructuring results
XML structure: 4. XQuery

Higher expressiveness, especially for database-like applications:

- Joins (trees \rightarrow graphs)
- Aggregations
- Constructors for restructuring results

Example: List each publisher and the average price of its books

FOR p IN distinct(document("bib.xml")//publisher)
LET $a :=$ avg(document("bib.xml")//book[publisher = $p]/price)
RETURN
<publisher>
 <name> p/text() </name>
 <avgprice> a </avgprice>
</publisher>
XML content typing

Content Typing

Object Types

Data Types

Text only

Nested structure

Named fields

XPath

XQuery

Structure
XML content typing: 1. Text

<book>
<author>John Smith</author>
<title>XML Retrieval</title>
.chapter>
<heading>Introduction</heading>
This text explains all about XML and IR.
</chapter>
<chapter>
<heading>XML Query Language XQL</heading>
</chapter>
<chapter>
<section>
<heading>Examples</heading>
</section>
<section>
<heading>Syntax</heading>
Now we describe the XQL syntax.
</section>
</chapter>
</book>
XML content typing: 2. Data Types

- Data type: domain + (vague) predicates (see above)
- Close relationship to XML Schema, but
 - XMLS supports syntactic type checking only
 - No support for vague predicates
XML content typing: 3. Object Types
Based on Tagging / Named Entity Recognition

- Object types: Persons, Locations, Dates, ...

 Pablo Picasso (*October 25, 1881 - April 8, 1973*) was a Spanish painter and sculptor.... In *Paris*, Picasso entertained a distinguished coterie of friends in the Montmartre and Montparnasse quarters, including André Breton, Guillaume Apollinaire, and writer Gertrude Stein.

To which other artists did Picasso have close relationships? Did he ever visit the USA?

- Named entity recognition methods allow for automatic markup of object types

- Object types support increased precision
XML content typing
Tag semantics modelled as hierarchies

Object type hierarchies

Person
 Scientist
 Physicist
 Chemist
 Artist
 Poet
 Actor
 Singer

Role hierarchies

Creator
 Author
 Editor
XML content typing
Tag semantics modelled in OWL
Retrieval of structured documents: POOL

- Structure of POOL programs
- Contexts and augmentation
- Augmentation and Inconsistencies
Goals

- retrieval of structured documents → hierarchical logical structure
- abstraction from node types → contexts as untyped nodes
- multimedia retrieval → expressiveness of restricted predicate logic
Structure of POOL programs

object: identifier + content

context: object with nonempty content
 a1[], s11[], s12[]

program: set of clauses

clause: context / proposition / rule

proposition:
 - term
 (image, presentation)
 - classification
 (article(a1), section(s11))
 - attribute
 (s11.author(smith), a1.pubyear(1997))
IR Models based on Predicate Logic
Retrieval of structured documents: POOL
Structure of POOL programs

POOL Example Program

a1[s11[image 0.6 retrieval presentation]
 s12[ss121[audio indexing]
 ss122[video not presentation]]]

s11.author(smith)
s121.author(miller) s122.author(jones)
a1.pubyear(1997)
article(a1) section(s11) section(s12)
 subsection(ss121) subsection(ss122)
Rules in POOL

rule: head :- body

head: proposition / context containing a proposition

body: conjunction of subgoals (propositions or contexts)

docnode(D) :- article(D)
docnode(D) :- section(D)
docnode(D) :- subsection(D)
mm-ir-doc(D) :- docnode(D) &
 D[audio & retrieval]
german-paper(D) :- D.author.country(germany)

query: |- body

?- D[audio & indexing]
Contexts and augmentation

clauses only hold for context where stated

augmentation:
propagation of propositions to surrounding contexts

a1[s11[image 0.6 retrieval presentation]
 s12[ss121[audio indexing]
 ss122[video not presentation]]]]

?- D[audio & video]
⇒ s12
⇒ a1
Augmentation with Uncertainty:

?- audio
⇒ 1.00 ss121
⇒ 0.60 s12
⇒ 0.36 a1

?- D[audio & video]
⇒ 0.36 s12
⇒ 0.22 a1

augmentation with uncertainty prefers most specific context!
Augmentation and Inconsistencies

\[
\begin{align*}
\text{d1} &\vdash \text{s1[audio indexing]} \\
\text{s2} &\vdash \text{s21[image retrieval]}
\end{align*}
\]

?- \text{D[audio & indexing]}
\implies \text{s1}
\implies \text{d1}

?- \text{D[video & image]}
\implies \text{s2}
\implies \text{d1}

?- \text{D[video & retrieval]}
\implies \text{retrieval is inconsistent in s2}
Four-Valued Logic

truth values: unknown, true, false, inconsistent

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
<th>U</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>U</td>
<td>I</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>F</td>
<td>U</td>
<td>F</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>F</td>
<td>F</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
<th>U</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>U</td>
<td>I</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
<td>U</td>
<td>T</td>
</tr>
<tr>
<td>I</td>
<td>T</td>
<td>I</td>
<td>T</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Interpretation as sets over two values:

- \(T = \{ \text{true} \} \)
- \(F = \{ \text{false} \} \)
- \(U = \{ \text{true, false} \} \)
- \(I = \{ \} \)
Applying Four-Valued Logic

d1[s1[audio indexing]
 s2[s21[image retrieval]
 s22[video not retrieval]]]

s22:
video \mapsto true
image \mapsto unknown
retrieval \mapsto false

s2:
image \mapsto true
video \mapsto true
retrieval \mapsto inconsistent
Description logic

- Thesaurus
- Introduction into OWL
- SPARQL
thesaurus knowledge:
can be expressed in propositional logic
\[\text{square} = \text{quadrangle} \land \text{regular-polygon} \]

description logic
- based on semantic networks
- more expressive than thesauri
 - instances of concepts
 - roles between (instances of) concepts
Semantic Web (ontology) languages

RDF: “Resource description language”
- Semantic markup language, only resources and their properties, serialisation in XML

RDFS: “RDF Schema”, schema definition language for RDF

OWL: extends RDF/RDFS by richer modelling primitives, OWL Lite/DL/Full
- OWL Lite contains simple primitives
- OWL DL corresponds to expressive description logic
- OWL Full is OWL DL + RDF

Knowledge base can be modelled as collection of RDF triples (RDF/XML serialisation)
Alternative encoding: abstract syntax (easier to read)
Objects, classes, literals and datatypes

- Two distinct domains:
 - Classes: for objects
 - Data types: for literals
Class(Female partial Animal)

<owl:Class rdf:ID="Female">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>
Class(Male partial Animal)
DisjointClasses(Male Female)

<owl:Class rdf:ID="Male">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <owl:disjointWith rdf:resource="#Female"/>
</owl:Class>
Object properties (1)

ObjectProperty(hasParent domain(Animal) range(Animal))

<owl:ObjectProperty rdf:ID="hasParent">
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="#Animal"/>
</owl:Class>
Object properties (2)

ObjectProperty(hasFather super(hasParent) range(Male))

<owl:ObjectProperty rdf:ID="hasFather">
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 <rdfs:range rdf:resource="#Male"/>
</owl:Class>
Datatype properties

DatatypeProperty(shoesize Functional domain(Animal) range(xsd:decimal))

<owl:DatatypeProperty rdf:ID="shoesize">
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="xsd:decimal"/>
 <rdf:type rdf:resource="owl:FunctionalProperty"/>
</owl:Class>
Property restrictions

Class(Person partial Animal restriction(hasParent allValuesFrom(Person)
 restriction(hasParent cardinality(2)))

<owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParent"/>
 <owl:allValuesFrom rdf:resource="#Person"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParent"/>
 <owl:cardinality>2</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
Instances

Individual(Kain type(Male) value(hasFather Adam)
value(hasMother Eve)
value(shoesize 10))

<Male rdf:ID="Kain">
 <hasFather rdf:resource="#Adam"/>
 <hasMother rdf:resource="#Eve"/>
 <shoesize>10</shoesize>
</Male>
Further modelling primitives

owl:inverseOf: inverse property: $p(a, b) \iff r(b, a)$

owl:TransitiveProperty: $p(a, b), p(b, c) \rightarrow p(a, c)$

owl:SymmetricProperty: $p(a, b) \rightarrow p(b, a)$

owl:InverseFunctionalProperty: inverse property is functional

owl:hasValue at least one property value equals object or datatype value

owl:someValuesFrom at least one property value is instance of class, expression or datatype

owl:interSectionOf, owl:unionOf, owl:complementOf: boolean combinations of class expressions

owl:oneOf: define class by enumerating its instances
OWL Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>DL Syntax</th>
<th>Example</th>
<th>Modal Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \sqcap \ldots \sqcap C_n$</td>
<td>Human \sqcap Male</td>
<td>$C_1 \wedge \ldots \wedge C_n$</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \sqcup \ldots \sqcup C_n$</td>
<td>Doctor \sqcup Lawyer</td>
<td>$C_1 \vee \ldots \vee C_n$</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\negMale</td>
<td>$\neg C$</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1} \sqcup \ldots \sqcup {x_n}$</td>
<td>${\text{john}} \sqcup {\text{mary}}$</td>
<td>$x_1 \lor \ldots \lor x_n$</td>
</tr>
<tr>
<td>allValuesFrom</td>
<td>$\forall P.C$</td>
<td>$\forall \text{hasChild}.\text{Doctor}$</td>
<td>$[P]C$</td>
</tr>
<tr>
<td>someValuesFrom</td>
<td>$\exists P.C$</td>
<td>$\exists \text{hasChild}.\text{Lawyer}$</td>
<td>$\langle P \rangle C$</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>$\leq np$</td>
<td>$\leq 1\text{hasChild}$</td>
<td>$[P]_{n+1}$</td>
</tr>
<tr>
<td>minCardinality</td>
<td>$\geq np$</td>
<td>$\geq 2\text{hasChild}$</td>
<td>$\langle P \rangle_n$</td>
</tr>
</tbody>
</table>
OWL Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>DL Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>superClassOf</td>
<td>$C_1 \sqsubseteq C_2$</td>
<td>Human \sqsubseteq Animal \sqcap Biped</td>
</tr>
<tr>
<td>equivalentClass</td>
<td>$C_1 \equiv C_2$</td>
<td>Man \equiv Human \sqcap Male</td>
</tr>
<tr>
<td>disjointWith</td>
<td>$C_1 \sqsubseteq \neg C_2$</td>
<td>Male $\sqsubseteq \neg$ Female</td>
</tr>
<tr>
<td>sameIndividualAs</td>
<td>${x_1} \equiv {x_2}$</td>
<td>${\text{President_Bush}} \equiv {\text{G_W_Bush}}$</td>
</tr>
<tr>
<td>differentFrom</td>
<td>${x_1} \sqsubseteq \neg {x_2}$</td>
<td>john $\sqsubseteq \neg{\text{peter}}$</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasDaughter \sqsubseteq hasChild</td>
</tr>
<tr>
<td>equivalentProperty</td>
<td>$P_1 \equiv P_2$</td>
<td>cost \equiv price</td>
</tr>
<tr>
<td>inverseOf</td>
<td>$P_1 \equiv P_2^\neg$</td>
<td>hasChild \equiv hasParent$^\neg$</td>
</tr>
<tr>
<td>transitiveProperty</td>
<td>$P^+ \sqsubseteq P$</td>
<td>ancestor$^+ \sqsubseteq$ ancestor</td>
</tr>
<tr>
<td>functionalProperty</td>
<td>$\top \sqsubseteq \leq 1P$</td>
<td>$\top \sqsubseteq \leq 1\text{hasMother}$</td>
</tr>
<tr>
<td>inverseFunctionalProperty</td>
<td>$\top \sqsubseteq \leq 1P^\neg$</td>
<td>$\top \sqsubseteq \leq 1\text{hasSSN}^\neg$</td>
</tr>
</tbody>
</table>
IR Models based on Predicate Logic
Description logic
Introduction into OWL

OWL DL Semantics

\[(C \cap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}\]
\[(C \cup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}\]
\[(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}\]
\[\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}\]
\[(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}\]
\[(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}\]
\[(\leq nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leq n\}\]
\[(\geq nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geq n\}\]
Limitations of OWL

OWL lacks support for

- **uncertainty**: only deterministic relationships possible, no weighting or probabilistic facts
 ⇒ “Pr(hasFather(lisa,thomas))=0.9” cannot be expressed

- **rules**: no general rules, only specific rules like subClassOf, TransitiveProperty...
 ⇒ “if hasParent(A,B) and hasParent(C,D) and hasSibling(B,D), then hasCousion(A,C)” cannot be expressed

- **n-ary datatype predicates**:
 OWL datatypes are based on XML Schema datatypes, thus providing only unary datatype predicates
 ⇒ “sameDomain(foo@bar.de,baz@bar.de)” cannot be expressed

⇒ IR queries cannot be expressed directly in OWL
OWL: Conclusion

- OWL extends RDF(S) by additional modelling primitives
- well-defined semantics, based on description logics
- does not support all RDF features (no reification, only three levels owl:Class, classes and objects)
- lacks important features:
 - only deterministic features, no probabilistic relationships
 - no rules (but in SWRL)
 - restricted datatype predicates (due to XML Schema)
- OWL and associated languages become standard in the Semantic Web
Semantic Web Layers

- Self-desc. doc.
- Data
- Ontology vocabulary
- RDF + rdfschema
- XML + NS + xmschema
- Unicode
- URI
- Trust
- Proof
- Logic
- Rules
- Data
- Digital Signature
SPARQL

query language for getting information from RDF (OWL) graphs

Facilities for

- extract information in the form of URIs, blank nodes, plain and typed literals
- extract RDF subgraphs
- construct new RDF graphs based on information in the queried graphs

Features:

- matching graph patterns
- variables – global scope; indicated by ’?’ or ‘$’
SPARQL: Basic Graph Pattern

- Set of Triple Patterns
 - Triple Pattern – similar to an RDF Triple (subject, predicate, object), but any component can be a query variable; literal subjects are allowed
 - Matching a triple pattern to a graph: bindings between variables and RDF Terms

- Matching of Basic Graph Patterns
 - A Pattern Solution of Graph Pattern GP on graph G is any substitution S such that S(GP) is a subgraph of G.
 - `SELECT ?x ?v WHERE ?x ?v ?x`
SPARQL: Group Patterns + Value Constraints

Group Pattern: A set of graph patterns which must all match
Value Constraints: restrict RDF terms in a solution
SELECT ?n WHERE
?n profession "Physicist" . ?n isa "Politician"
SPARQL: Query forms

SELECT returns all, or a subset of the variables bound in a query pattern match formats: XML or RDF/XML

CONSTRUCT returns an RDF graph constructed by substituting variables in a set of triple templates

DESCRIBE returns an RDF graph that describes the resources found.

ASK returns whether a query pattern matches or not.
Conclusion and Outlook
Conclusion

Inference

- Probabilistic relational model supports integration of IR+DB
- Probabilistic Datalog as powerful inference mechanism
- Allows for formulating retrieval strategies as logical rules
Conclusion

Inference

- Probabilistic relational model supports integration of IR+DB
- Probabilistic Datalog as powerful inference mechanism
- Allows for formulating retrieval strategies as logical rules

Vague predicates

- Natural extension of IR methods to attribute values
- Vague predicates can be learned from feedback data
- Transition from propositional to predicate logic
Conclusion

Inference
- Probabilistic relational model supports integration of IR+DB
- Probabilistic Datalog as powerful inference mechanism
- Allows for formulating retrieval strategies as logical rules

Vague predicates
- Natural extension of IR methods to attribute values
- Vague predicates can be learned from feedback data
- Transition from propositional to predicate logic

Expressive query language
- Joins
- Aggregations
- (Re)structuring of results
Don’t program search engines, design them

http://www.spinque.com/
Outlook

IR Systems vs. DBMS
Outlook
IR Systems vs. DBMS
Outlook
IR Systems vs. DBMS

Separation between IRS and IR application?
Towards an IRMS

Application

DBMS

DB

Application

IRMS

Collection
Towards an IRMS
Towards an IRMS

Application -> SQL -> DBMS

Application -> IR Query Language -> IRMS

DB

Collection
References I

Dalvi, N. N.; Suciu, D.
(2007).
Efficient query evaluation on probabilistic databases.
VLDB J. 16(4), pages 523–544.

Forst, J. F.; Tombros, A.; Roelleke, T.
(2007).
POLIS: A Probabilistic Logic for Document Summarisation.

Frommholz, I.; Fuhr, N.
Probabilistic, Object-oriented Logics for Annotation-based Retrieval in Digital Libraries.
References II

Fuhr, N.; Lalmas, M.
(2007).
Advances in XML retrieval: the INEX initiative.

Fuhr, N.; Rölleke, T.
(1997).
A Probabilistic Relational Algebra for the Integration of Information Retrieval and Database Systems.

Fuhr, N.; Rölleke, T.
HySpirit – a Probabilistic Inference Engine for Hypermedia Retrieval in Large Databases.

References IV

Pearl, J.
(1988).
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman, San Mateo, California.

Rölleke, T.; Wu, H.; Wang, J.; Azzam, H.
(2007).
Modelling retrieval models in a probabilistic relational algebra with a new operator: the relational Bayes.
The International Journal on Very Large Data Bases (VLDB) 17(1), pages 5–37.

Suciu, D.; Olteanu, D.; Ré, C.; Koch, C.
(2011).
Probabilistic Databases.